Name: UID:

1. Cache that Struct!

Consider the following two scenarios. Which has a higher cache miss rate? Why might we
choose to do either implementation? Assume that N > cache size and we have 64-byte
cache lines.

a. struct airplane {
int id_number;
int num_passengers;
float airport_x, airport_y;
float coord_x, coord_ y;
float dir_x, dir_y;
float vel_x, vel_y;

}i

struct airplane airplanes|[N];

float avg_dist_from_port = 0;

for (int 1 = 0; 1 < N; i++) {
float airport_x = airplanes[i].airport_x;
float airport_y
avg_dist_from port += sqgrt((airport_x)**2 + (airport_y) *x2);

airplanes[i].airport_y;

}
avg_dist /= N;

b. struct pair{
float x,y;
bi
int id_numbers|[N];
int num_passengers|[N];
struct pair airport_coords[N];
struct pair coords([N];
struct pair dir[N];
struct pair vel[N];

float avg_dist_from_port = 0;
for (int i = 0; 1 < N; i++) {
float airport_x = airport_coords[i].x;
float airport_y = airport_coords[i].y;
avg_dist_from port += sqgrt((airport_x)**2 + (airport_y)*x2);
}
avg_dist /= N;

2. Stencils

In the performance lab, you will be optimizing some code for 3D stencil computation. In
this question, let’s take a look at 1D and 2D stencil computations. (A side note: in the
performance lab and in this question, we simplified the notation of the stencil computation
(for handling edge cases), so it may differ slightly from other sources you might find.)

1. 1D Stencil

Assume QOUT_LEN is N >> 10000, KERN_LEN is 2, and IN_LEN is N+2. Assume
the cache has 32B/line.

a. What is the miss rate of vanilla_1D_stencil?

void vanilla_1D_stencil (double In[IN_LEN], double Out [OUT_LEN],
double Kern[KERN _LEN]) {
for (int i = 0; i < OUT_LEN; i++) {
for (int x = 0; x < KERN_LEN; x++) {
Oout[1i] += In[i+x] * Kern[x]

b. Given the initialization below, what does the resulting Out array look after calling
vanilla_1D _stencil?

doublex In = malloc (IN_LEN x sizeof (double));
for (int 1 0; i < IN_LEN; i+4+) { In[i] =1 + 1;}

doublex Kern = malloc (KERN_LEN * sizeof (double));
for (int i1 = 0; 1 < KERN_LEN; i++4+) { Kern[i] = 1.0 / KERN_LEN; }

doublex Out = malloc (OUT_LEN x sizeof (double));
for (int i = 0; i < OUT_LEN; i++4) {Out[i] = 0;}

Bonus: Assume that KERN_LEN was changed to be 1000, how could we change the code
to reduce the miss rate?

2. 2D Stencil

Assume OUT_LEN is N >> 10000, KERN_LEN is 4, and IN_LEN is N+4. Assume
the cache has 32B/line and the total cache size is smaller than 8N bytes.

a. What is the miss rate of vanilla 2D _stencil?

void vanilla_2D_stencil (double In[IN_LEN] [IN_LEN], double Out [
OUT_LEN] [OUT_LEN], double Kern[KERN_LEN] [KERN_LEN]) {
for (int i1 = 0; i < OUT_LEN; i++) {
for (int j = 0; J < OUT_LEN; j++) {
for (int x = 0; x < KERN_LEN; x++) {
for (int y = 0; y < KERN_LEN; y++) {
Oout[i][3j] += In[i+x][j+y] = Kern[x][y];

b. How can we reduce the miss rate?

Optional: MisS1oN CRitl1KaL

Examine the code below that stores data into an accumulator from operations on elements
of the vector v. Assume that there are no compiler optimizations applied when compiling
this code. Assume that OP has a higher latency than the add operation.

void combine7 (vec_ptr v, data_t =*dest) {
long length = vec_lenth(v);
long limit = length - 1;
data_t =xdata = get_vec_start (v);
data_t acc = 0;

for (long i = 0; 1 < limit; i+= 2) {

acc = acc OP (data[i] OP datali + 11);
}
for(; i < length; i++) {

acc = acc OP datali];

}

xdest = acc;

a. For one iteration of the loop, draw the data-flow graph, highlighting the critical path.

b. The function incorporates 2x1 loop unrolling, but what other ways can we modify the
function to reduce the latency bound by half?

