
Question 1.

Method 1:

Miss Rate = Misses/Requests = (Struct Size/Cache Size)/Requests

All of the excess data that we are not using is pulled into the cache when we access each airplane’s
position and nearest airport position. Therefore, we take the entire size of the struct (40 bytes) and
the size of our cache line (64-byte) and plug the values into our formula. Additionally, we know we
make 2 requests per iteration.

Miss Rate = Misses/Requests = (40*N/64)/(2N) = 0.3125

This method has a higher cache miss rate, but is much more intuitive to use. Therefore, it is likely that
we will choose this implementation if our N is small and impact on performance is negligible.

Method 2: By simplifying our struct into JUST the x and y float values to act as a sort of “parent”
struct, we can create an individual struct array for each value type we want to store. This simplifies our
operations: each float is 4 bytes, so we can fit 16 into our cache. Each iteration accesses 2 bytes, which
fits evenly into our cache. This means we only miss the first access of every 16 floats.

Miss Rate = Misses/Requests = 1/16 = 0.0625

While this is more optimized, it may be less intuitive to work with and is therefore better to use if N is
extremely large.



Question 2.

a. The critical path for a single loop is going to be the longest path. Looking at our data flow
diagram below, the critical path would be the load of our data, the op between our loads, then
the op with acc

acc data[i] data[i+1]

\ \           /

\ Op

\ /

\                  /

Op

|

acc

b. The critical path is always going to be from one register back to itself, or one variable back to
itself for loops. In this case, we are dependent upon acc. Acc relies on the operation between
acc and (data[i] op data[i+1]). Data[i] and data[i+1] are not dependent, so the critical path is
acc performing op with the other value, and storing it back into acc.

c. We have incorporated a 2x1 loop unrolling, and we are solely dependent upon acc waiting on
acc from previous loops. Unrolling it again to be a 4x1 loop unrolling, we would half our
latency bound again.

You could also create a second accumulator, creating a 2x2 unrolling, or even a 4x2 unrolling,
which  would shrink the latency bound as well.



Question 3.

1D Stencil

(a) 1/12

● Each cache line holds 4 doubles (32 bytes)
● 2N iterations in total, from the nested loops
● Kern is brought into cache once, and reused in each iteration

o approximately 0 miss per iteration
● For the array Out, 1 miss every time the outer loops counter i increments by 4

o approximately 1/8 miss per iteration
● Similarly for the array In

o approximately 1/8 miss per iteration
● Per iteration, (0 + 1/8 + 1/8 ) = 1/4 miss
● 3 memory accesses per iteration
● miss rate = # cache miss / # memory access = (1/4) / 3 = 1/12

(b) The resulting Out array is [1.5, 2.5, 3.5, … ]

● Array In is initialized as [1, 2, 3, 4, … ]
● Kern is [0.5, 0.5]

o This stencil/kernel just averages two neighboring elements
● Note: this question has little to do with memory organization or performance optimization. The

aim is to use a toy example to hopefully provide some intuition about the stencil computation in
the performance lab.



2D Stencil

(a) 5/192
● Each cache line holds 4 doubles (32 bytes)

● 16 (N^2) iterations in total
o from the four nested loops N x N x 4 x 4

● Kern is brought into cache once, and reused in each iteration
o approximately 0 miss per iteration

● For the array Out, 1 miss every time the loops counter j (the second outmost loop)
increments by 4

o approximately 1/64 miss per iteration
● For the array In, 4 miss on average when the loops counter j (the second outmost loop)

increments by 4
o brings in 4 cache lines that respectively start with the addresses: In[i][j],

In[i+1][j], In[i+2][j], and In[i+3][j],
o approximately 1/16 miss per iteration

● Per iteration, (0+ 1/16 + 1/64) = 5/64 miss
● 3 memory accesses per iteration
● miss rate = # cache miss / # memory access = (5/64) / 3 = 5/192

(b) This is more of an open-ended discussion question.

● First of all, before considering how, why reducing miss rates?
o Compared to cache hit, cache miss is expensive (order of magnitude more clock cycles)

● Use tiling/blocking to improve spatial locality
o The total cache size is less than 8N, so it is not large enough to even hold a full row of

data (of either the input or the output array)

/* an example of blocking (tiling) */

const int TILE_LEN = 64; // TODO: this value needs to be tuned

for (int ii = 0; ii < OUT_LEN; ii += TILE_LEN)

for (int jj = 0; jj < OUT_LEN; jj += TILE_LEN)

for (int i = ii; i < ii + TILE_LEN; i++)

for (int j = jj; j < jj + TILE_LEN; j++)

for (int x = 0; x < KERN_LEN; x++)

for (int y = 0; y < KERN_LEN; y++)

Out[i][j] += In[i+x][j+y] * Kern[x][y];


