1. Struct iteration and Cache behavior
Consider the following two scenarios. Which has a higher cache miss rate? Why might we
choose to do either implementation? Assume that N >> cache_size and we have 64-byte cache
lines.
Method 1:
struct airplane/{
int id number;
int num passengers;
float airport x, airport y;
float coord x, coord y;
float dir x, dir y;
float vel x, vel y;
}i
struct airplane airplanes|[N];
float avg dist from port = 0;
for(int 1 = 0; 1 < N; i++){
float airport x

airplanes[i].airport x;
float airport y = airplanes[i].airport y;

avg dist from port += sqrt((airport x) ** 2 + (airport y) **
2);
}
avg _dist /= N;

Method 2:
struct pair/{
float x,y;
}
int id numbers([N];
int num passengers|[N];
struct pair airport coords|[N];
struct pair coords|[N];
struct pair dir[N];
struct pair vel[N];

float avg dist from port = 0;

for(int 1 = 0; 1 < N; i++){
float airport x = airport coords[i].x;
float airport y = airport coords[i].y;

avg dist from port += sqrt((airport x) ** 2 + (airport y) **
2);

}
avg dist /= N;

2. Critical Path
Examine the code below that stores data into an accumulator from operations on
elements of the vector v

void combine7 (vec ptr v, data t *dest) {

long 1i;
long length = vec length(v);
long limit = length-1;
data t *data = get vec start(v);
data t acc = IDENT:
// combines 2 elements at a time
for(i = 0; 1 < limit; 1i+=2){

acc = acc OP (data[i] OP datal[i+1]):
}
// finish any remaining elements
for(; i < length; i++){

acc = acc OP datalil]l;

}

*dest = acc;

For one iteration of the loop, what would the data-flow graph look like? In addition,
highlight the critical path in the data flow.

b) When this function is given a vector size of n, what would the data-flow graph look like?
Similar to part a, highlight the critical path in the entire data flow.

c) The function incorporates 2x1 loop unrolling, but what other ways can we modify the
function to reduce the latency bound by half?

3. 1D and 2D Stencil optimization

In the performance lab, you will be optimizing some code for 3D stencil computation. In this question,
let's take a look at 1D and 2D stencil computations. (A side note: in the performance lab and in this
guestion, we simplified the notation of the stencil computation (for handling edge cases), so it may differ
slightly from other sources you might find.)

(1) 1D Stencil
Assume OUT_LEN is N >> 10000, KERN LEN is 2, and IN LEN is N+2.
(a) Assume cache has 32B/line, what is the miss rate of vanilla 1D stencil?
void vanilla 1D stencil (double In[IN LEN], double Out[OUT LEN],
double Kern[KERN_LEN]) {
for (int i = 0; i < OUT_LEN; i++) {

for (int x = 0; x < KERN LEN; x++) {

Out[i] += In[i+x] * Kern[x];

(b) Given the initialization below, what does the resulting Out array look like after calling
vanilla 1D stencil?

double* In = malloc(IN LEN * sizeof (double));

for (int i 0; 1 < IN _LEN; i++) { In[i] =1 + 1;}

double* Kern = malloc (KERN LEN * sizeof (double));

for (int 1 = 0; i1 < KERN LEN; i++) { Kern[i] = 1.0/KERN LEN;}

double* Out = malloc(OUT LEN * sizeof (double));

for (int 1 = 0; i1 < OUT_LEN; i++) {Outf[i] = 0;}

(2) 2D Stencil

Assume OUT LEN is N >> 10000, KERN_ LEN is 4, and IN_ LEN is N+4. Assume the cache has 32B/line,
and the total cache size is smaller than 8N bytes.

(a) Whatis the missrate of vanilla 2D stencil?

void vanilla 2D stencil (double In[IN LEN][IN LEN],
double Out[OUT LEN] [OUT_ LEN],
double Kern[KERN LEN] [KERN LEN]) {
for (int i = 0; 1 < OUT LEN; i++) {
for (int j = 0; j < OUT_LEN; j++) {
for (int x = 0; x < KERN_LEN; x++) {
for (int y = 0; y < KERN LEN; y++) {

Out[i] [J] += In[i+x][j+y] * Kern[x]I[y];

(b) How can we reduce the miss rate?

