Name: SOLUTIONS

UID: CS 33

1. Buffer Overflow

The function Gets is similar to the standard library function get s—it reads a string from
standard input (terminated by ‘\n‘ or end-of-file) and stores it (along with a null terminator)
at the specified destination (such as a char array previously declared). Functions Gets ()
and gets () have no way to determine whether their destination buffers are large enough
to store the string they read.

Dump of assembler code for function getbuf: Dump of assembler code for func-

tion getbuf:

=> 0x0000000000601748
0x000000000060174c
0x000000000060174f£
0x0000000000601754
0x0000000000601759
0x000000000060175d
0x000000000060175f£

<+0>:
<+4>:

<+7>: mov %rsp, %rdi

<+12>:
<+17>:
<+21>:
<+23>:

push %rax

sub $0x40,%rsp

callg 0x40198a <Gets>
add $0x40, %rsp

pop

$rax

retqg

(a) What do I need to do if I want to access a function through buffer overflow (what needs
to be done to the stack)? The function’s address is 0x500142

We have 64 bytes of padding for the sub and 8 bytes to account for the push (draw the
stack). When the function returns, we want the address popped into %rip to be the
address of the function we want to run. Thus, we need 72 bytes of padding, and we place
the address after that. This is the hex input we would pass in to a magical function like
hex2raw which would give us the raw string that when fed into getbuf and placed onto
the stack, would convert to the hex input.

PP AA
PP AA
PP AA
PP AA
PP AA
PP AA
PP AA
PP AA
PP AA
42 01

DD
DD
DD
DD
DD
DD
DD
DD
DD
50

DD
DD
DD
DD
DD
DD
DD
DD
DD
00

IT
IT
IT
IT
IT
IT
IT
IT
IT
00

NN
NN
NN
NN
NN
NN
NN
NN
NN
00

GG
GG
GG
GG
GG
GG
GG
GG
GG
00

01
02
03
04
05
06
07
08
09
00

(b) What do I need to do if I want some instructions to be executed before the function is
accessed? (Assume the value of %rsp right before getbuf is called is 0xabcd0000).

First set the return address to a location on the stack, where the instructions will be
executed. At that location, write the instructions that you want to be executed. Then
include a return statement. We then want to set the return address to the location of
the function.

PP AA DD DD ITI NN GG 01
PP AA DD DD II NN GG 02
PP AA DD DD II NN GG 03
PP AA DD DD II NN GG 04
PP AA DD DD II NN GG 05
PP AA DD DD II NN GG 06
PP AA DD DD II NN GG 07
PP AA DD DD II NN GG 08
PP AA DD DD II NN GG 09

10 00 cd ab 00 00 00 00 // address of our instructions
42 01 50 00 00 00 00 0O // address of function to call
IN ST RU CT IO NS SS SS // 1instructions to execute

IN ST RU CT IO NS SS SS
IN ST RU CT IO NS SS SS

IN ST RU CT IO NS SS SS
IN ST RU CT IO NS SS SS
c3 // note: c3 is the bytecode for ret

2. Function Optimization

void cs33fun (charx Midterm, char* Grade, int* Final, int n) {
for (int i = 0; i < (strlen(Midterm)); i++) {
strcat (Grade, Midterm);
for (int j = 0; j < n; J++)
for (int k = 0; k < i; k++)
Final[J] += strlen (Grade);

}

Question: What are some optimizations that can be made to the following function?

There are many ways this function can be optimized, including but not limited to:
e The innermost loop can be replaced with the statement:

Final[j] += 1 x strlen(Grade);

e Move strlen(Midterm) outside of the loop

There are several things you SHOULDN’T do:
e Based on “Procedure calls” - Move strcat out of the loop
o Strcat is required for the logic of the function
e Based on “Procedure calls” - Move strlen(Grade) outside of the outermost loop (and
nothing else)
o The string Grade changes over each iteration of the outermost for loop
o BUT can be moved outside of the middle loop. Since strlen(Grade) increments by
strlen(Midterm) during each outermostiteration, can actually be moved outside the
outermost loop if handledcorrectly

