
Worksheet 4 Solutions
1. What is the value of y at the end of the following two operations?

x = x ^ (~y);
y = y ^ x;

~x

y = y ^ (x ^ (~y)) → (y ^ ~y) ^ x → 1s ^ x == ~x

After you plug in x, you can use the commutative and associative
properties of XOR and do y^~y first which results in all 1s. x XORed
with 1s flips its bits, thus ~x

Say x = 0111 and y is 1010
0111 ^ 0101 = 0010
1010^0010 = 1000 which is ~x

2. Given the following declarations:
int x = foo(); int y = bar(); unsigned ux = cookie();

Do these statements always evaluate to true?
(a) x > ux ====> (~x+1) < 0
FALSE
Consider x = -1.
● The binary is all 1s, thus when you do ~(all 1s) it becomes all 0s.

○ Adding the 1 makes the value positive.
This is true for all negative x values since the sign bit will always
be flipped to 0.
● So the ‘it follows’ is not true for all x > ux.

(b) ux - 2 >= -2 ====> ux <= 1
TRUE
If ux is 0
● it is comparing the unsigned values of -2 and -2, which are equal.
If ux is 1
● it is comparing the unsigned values of -1 and -2, which are Umax vs

Umax -1, 2,3, etc
● aren’t true and ux can not be a negative value.
So, it follows that ux must be 0 or 1.

(c) (x^y)^x == (x+y)^((x+y)^y)
TRUE
Notice that both sides are of the form (A^y)^A
● For the left hand side, A = x
● For the right hand side, A = x+y
(A^y)^A is equivalent to y
● Thus, the equivalence simplifies to y == y
● Both sides of the equivalence are equal

(d) (x < 0) && (y < 0) == (x + y) < 0
FALSE
Say x == TMin and y == TMin.
● (x+y) would overflow.

3. char** apple[5][9];
char* banana[1][9];
char strawberry[4][2];
struct ucla {
 char blue[6];
 union {
 int gold;
 char joe[8];
 } bruin;
} arr[4];

How many bytes of space would these declarations require?
apple: 360 bytes (8 * 5 * 9)
banana: 72 bytes (8 * 1 * 9)
strawberry: 8 bytes (1 * 4 * 2)

arr: 64 bytes
The char array requires 6 bytes. The union requires the number of
bytes of its largest data type. In this case, the union requires 8
bytes. In order for the union to be correctly aligned, there needs to
be 2 bytes of padding after the first char array. The struct has a
size of 16 bytes. There are 4 instances of this struct in the array
arr, so in total we need 64 bytes.

4. Consider the following struct:
typedef struct {
 char first;
 int second;
 short third;
} stuff;

We are debugging an application using gdb on an x86-64 machine. The application has a
variable called array - defined as: stuff array[2][2];

Using gdb, we find the following information at a particular stage in the execution:

Find the value of array[1][0].second at this stage of the execution, i.e., what would be
printed out by the following statement? printf("%d\n", array[1][0].second);

1005
Because of alignment, each object of type “stuff” is 12 bytes.
Due to how arrays are stored in memory,
● The array is stored as:

array[0][0], array[0][1], array[1][0], array[1][1]
From the gdb output, we can tell that the array starts at
0x7fffffffe020
● array[1][0] is 0x7fffffffe038 to 0x7fffffffe043
● Note: this is in hex, so 0x7fffffffe038 + 8 = 0x7fffffffe040
Second is an integer, and is the 5th to 8th byte of an object of type
“stuff”
● These are bytes 0x7fffffffe03c to 0x7fffffffe03f
● They have the values 0xed, 0x03, 0x00, 0x00
● Since this system is little endian, the value is 0x000003ed

○ This is equivalent to 1005

5. The following is part of the result of the command ‘objdump -d’ on an executable

The declaration for the function IronMan was: int IronMan(int scraps);
(a) What is the return value of IronMan(23)?
368
After instructions 0x4006e1 and 4006e4, the input (which was stored
in %rdi) is now stored in %eax
Instructions 0x4006e7 then shifts %eax to the left by 4
● This is equivalent to multiply by 2^4, which is 16
23 * 16 = 368

(b) Given that the function Hulk returns 1, what do we know about the value of %edi right
before instruction 0x400741 is executed?

%edi is between 25 and 31
Since the function returns 1, we know that the jump instructions at
0x400750 and 0x400759 did not jump.
● From instructions 0x400749 and 0x400750

○ we know that we would have jumped if -0x8(%rbp) was less than
or equal to 0x18f

○ Thus we know -0x8(%rbp) is greater than 0x18f, or 399
● From instructions 0x400752 and 0x400759

○ We know that we would have jumped if -0x8(%rbp) was greater
than 0x1f4

○ Thus we know -0x8(%rbp) is less than or equal to 0x1f4, or 500
● Thus we know that -0x8(%rbp) is between 400 and 500, inclusive

○ Thus %eax is between 400 and 500, inclusive
From the previous question, we know that IronMan multiplies inputs by
16
● We also know that the function returns a value between 400 and 500

with input %rdi
● Reversing the function, we know the input must have been between

400/16 and 500/16
Thus we know that %rdi was between 25 and 31 right before the IronMan
function call

6. Assume a floating-point representation using 1 sign bit, 3 exponent bits, and 4 mantissa bits.
(a) Decode the 8-bit floating point 0xe7 to decimal.
-11.5
Convert: 0xe7 = 0b11100111
Separate: 1 110 0111
Sign: negative
Exponent: 0b110 = 6, bias = 2^(3-1)-1 = 3, 6 – 3 = 3
Mantissa: 1.0111
-1 * 0b1.0111 * 2^3 = -1 * 0b1011.1 = - (8 + 2 + 1 + ½) = -11.5
(b) Encode the following numbers with the floating-point representation.

(i) -15.5
11101111
Sign: 1 (negative)
15.5 = 0b1111.1 = 0b1.1111 * 2^3
Encode exponent: 3 + bias = 6 = 0b110
Encode mantissa: 1111
1 110 1111
(ii) -0
10000000
(iii) -1
10110000
(iv) +0
00000000
(v) +∞
01110000

	Worksheet 4 Solutions

