Worksheet 4 Solutions

1. What is the value of y at the end of the following two operations?
```
        x = x ^ (~y);
    y = y ^ x;
~x
y = y ^ (x ^ (~y)) -> (y ^ ~y) ^ x -> 1s ^ x == ~x
After you plug in x, you can use the commutative and associative
properties of XOR and do y^~y first which results in all 1s. x XORed
with 1s flips its bits, thus ~x
Say x = 0111 and y is 1010
0111 ^ 0101 = 0010
1010^0010 = 1000 which is ~x
```

2. Given the following declarations:
int $x=$ foo(); int $y=$ bar(); unsigned $u x=$ cookie();
Do these statements always evaluate to true?
(a) $x>u x====>(\sim x+1)<0$

FALSE
Consider $\mathrm{x}=-1$.

- The binary is all 1s, thus when you do ~(all 1s) it becomes all 0s. - Adding the 1 makes the value positive.

This is true for all negative x values since the sign bit will always be flipped to 0 .

- So the 'it follows' is not true for all x > ux.
(b) ux - $2>=-2$ ====> ux $<=1$

TRUE
If ux is 0

- it is comparing the unsigned values of -2 and -2 , which are equal.

If ux is 1

- it is comparing the unsigned values of -1 and -2 , which are Umax vs Umax -1, 2,3, etc
- aren't true and ux can not be a negative value.

So, it follows that ux must be 0 or 1 .
(c) $\left(x^{\wedge} y\right)^{\wedge} x==(x+y)^{\wedge}\left((x+y)^{\wedge} y\right)$

TRUE
Notice that both sides are of the form ($\mathrm{A}^{\wedge} \mathrm{y}$)^A

- For the left hand side, $A=x$
- For the right hand side, $A=x+y$
$\left(A^{\wedge} y\right)^{\wedge} A$ is equivalent to y
- Thus, the equivalence simplifies to $y==y$
- Both sides of the equivalence are equal
(d) $(x<0) \& \&(y<0)==(x+y)<0$

FALSE
Say $\mathrm{x}==$ TMin and $\mathrm{y}==$ TMin.

- ($x+y$) would overflow.

3. char** apple[5][9]; char* banana[1][9];
char strawberry[4][2];
struct ucla \{
char blue[6];
union \{
int gold;
char joe[8];
\} bruin;
\} arr[4];

How many bytes of space would these declarations require?

| apple: | 360 bytes | $(8 *$ | $*$ | $9)$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| banana: | 72 bytes | $(8 *$ | 1 | $*$ | $9)$ |
| strawberry: | 8 bytes | $(1 *$ | 4 | $*$ | $2)$ |

arr: $\quad 64$ bytes
The char array requires 6 bytes. The union requires the number of bytes of its largest data type. In this case, the union requires 8 bytes. In order for the union to be correctly aligned, there needs to be 2 bytes of padding after the first char array. The struct has a size of 16 bytes. There are 4 instances of this struct in the array arr, so in total we need 64 bytes.
4. Consider the following struct:

```
typedef struct {
    char first;
    int second;
    short third;
} stuff;
```

We are debugging an application using 9 db on an x86-64 machine. The application has a variable called array - defined as: stuff array[2][2];

Using gdb, we find the following information at a particular stage in the execution:

```
[(gdb) p &array
$1 = (stuff (*)[2][2]) 0x7fffffffe0020
[(gdb) x/48xb 0x7fffffffe020
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0x7fffffffe020 & 0x61 & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 08\) & 0x00 & \(0 \times 00\) & \(0 \times 00\) \\
\hline 0x7fffffffe028: & 0x02 & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 62\) & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 00\) \\
\hline 0x7fffffffe030: & 0x64 & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 04\) & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 00\) \\
\hline 0x7fffffffe038: & 0x63 & \(0 \times 04\) & \(0 \times 40\) & \(0 \times 00\) & 0xed & \(0 \times 03\) & \(0 \times 00\) & \(0 \times 00\) \\
\hline 0x7fffffffe040: & 0xc8 & \(0 \times 00\) & \(0 x f f\) & \(0 x f f\) & \(0 \times 64\) & \(0 \times 7 \mathrm{f}\) & \(0 \times 00\) & \(0 \times 00\) \\
\hline 0x7fffffffe048: & \(0 \times 17\) & 0xa6 & \(0 \times 00\) & \(0 \times 00\) & 0xe1 & \(0 \times 00\) & \(0 \times 00\) & \(0 \times 0\) \\
\hline
\end{tabular}
Find the value of array[1] [0].second at this stage of the execution, i.e., what would be printed out by the following statement? printf("\%d\n", array[1][0].second);
1005
Because of alignment, each object of type "stuff" is 12 bytes.
Due to how arrays are stored in memory,
- The array is stored as:
    array[0][0], array[0][1], array[1][0], array[1][1]
From the gdb output, we can tell that the array starts at
0x7fffffffe020
- array[1][0] is 0x7fffffffe038 to 0x7fffffffe043
- Note: this is in hex, so 0x7ffffffffe038 + 8 = 0x7ffffffffe040
Second is an integer, and is the 5th to 8th byte of an object of type
"stuff"
- These are bytes 0x7ffffffffe03c to 0x7fffffffe003f
- They have the values 0xed, 0x03, 0x00, 0x00
- Since this system is little endian, the value is 0x000003ed
    - This is equivalent to 1005
```

5. The following is part of the result of the command 'objdump -d' on an executable

The declaration for the function IronMan was: int IronMan (int scraps) ; (a) What is the return value of IronMan (23) ?

```
368
After instructions 0x4006e1 and 4006e4, the input (which was stored
in %rdi) is now stored in %eax
Instructions 0x4006e7 then shifts %eax to the left by 4
- This is equivalent to multiply by 2^4, which is 16
23 * 16 = 368
```

(b) Given that the function Hulk returns 1, what do we know about the value of $\%$ edi right before instruction 0×400741 is executed?
\%edi is between 25 and 31
Since the function returns 1, we know that the jump instructions at $0 x 400750$ and $0 x 400759$ did not jump.

- From instructions $0 x 400749$ and 0x400750
o we know that we would have jumped if $-0 x 8$ (\%rbp) was less than or equal to $0 x 18 f$
- Thus we know -0x8 (\%rbp) is greater than 0x18f, or 399
- From instructions $0 x 400752$ and $0 x 400759$
- We know that we would have jumped if $-0 x 8$ (\%rbp) was greater than 0x1f4
- Thus we know $-0 x 8$ ($\%$ rbp) is less than or equal to $0 x 1 f 4$, or 500
- Thus we know that $-0 x 8$ (\%rbp) is between 400 and 500 , inclusive
- Thus \%eax is between 400 and 500, inclusive From the previous question, we know that IronMan multiplies inputs by 16
- We also know that the function returns a value between 400 and 500 with input \%rdi
- Reversing the function, we know the input must have been between 400/16 and 500/16
Thus we know that \%rdi was between 25 and 31 right before the IronMan function call

6. Assume a floating-point representation using 1 sign bit, 3 exponent bits, and 4 mantissa bits.
(a) Decode the 8 -bit floating point 0 xe 7 to decimal.
```
-11.5
Convert: Oxe7 = 0b11100111
Separate: 1 110 0111
Sign: negative
Exponent: 0b110 = 6, bias = 2^(3-1)-1 = 3, 6 - 3 = 3
Mantissa: 1.0111
-1 * 0b1.0111 * 2^3 = -1 * 0b1011.1 = - (8 + 2 + 1 + 1/2) = -11.5
```

(b) Encode the following numbers with the floating-point representation.

```
(i) -15.5
```

11101111
Sign: 1 (negative)
$15.5=0 b 1111.1=0 b 1.1111$ * 2^3
Encode exponent: 3 + bias = 6 = 0b110
Encode mantissa: 1111
11101111
(ii) -0
10000000
(iii) -1
10110000
(iv) +0
00000000
(v) $\quad+\infty$

01110000

