Worksheet 4 Solutions

1. What is the value of y at the end of the following two operations?
x=x " (~y);
y =Y

A

~X

A A A

(~y)) - (v & ~y) X - 1s X == ~X
After you plug in x, you can use the commutative and associative
properties of XOR and do y”~y first which results in all 1ls. x XORed

with 1s flips its bits, thus ~x

Say x = 0111 and y is 1010
0111 ~ 0101 = 0010
101070010 = 1000 which is ~x

2. Given the following declarations:

int x = foo(); int y = bar(); unsigned ux = cookie();
Do these statements always evaluate to true?
(@) x > ux ====> (~x+1) < 0
FALSE
Consider x = -1.

®¢ The binary is all 1ls, thus when you do ~(all 1ls) it becomes all Os.
0 Adding the 1 makes the value positive.

This is true for all negative x values since the sign bit will always

be flipped to 0.

® So the ‘it follows’ is not true for all x > ux.

(b)ux - 2 >= -2 ====> ux <=1

TRUE

If ux is 0

e it is comparing the unsigned values of -2 and -2, which are equal.

If ux is 1

® it is comparing the unsigned values of -1 and -2, which are Umax vs
Umax -1, 2,3, etc

e aren’t true and ux can not be a negative value.

So, 1t follows that ux must be 0 or 1.

(€) (x"y)"x == (x+y) " ((x+y)"y)

TRUE

Notice that both sides are of the form (A"y)" A
® TFor the left hand side, A = x

e For the right hand side, A = x+ty

(A"y)"A is equivalent to vy

®¢ Thus, the equivalence simplifies to y ==y
® Both sides of the equivalence are equal

(d) (x < 0) & (y < 0) == (x +y) <0
FALSE
Say x == TMin and y == TMin.

® (xty) would overflow.

3. char** apple[5][9];
char* bananal[l][9];
char strawberry[4][2];
struct ucla {

char bluel[6];
union {
int gold;
char joe[8];
} bruin;
} arrf4];
How many bytes of space would these declarations require?

apple: 360 bytes (8 * 5 * 9)
banana: 72 bytes (8 * 1 * 9)
strawberry: 8 bytes (1 * 4 * 2)
arr: 64 bytes

The char array requires 6 bytes. The union requires the number of
bytes of its largest data type. In this case, the union requires 8
bytes. In order for the union to be correctly aligned, there needs to
be 2 bytes of padding after the first char array. The struct has a
size of 16 bytes. There are 4 instances of this struct in the array
arr, so in total we need 64 bytes.

4. Consider the following struct:
typedef struct {
char first;
int second;
short third;
} stuff;
We are debugging an application using gdb on an x86-64 machine. The application has a
variable called array - defined as: stuff array[2][2];

Using gdb, we find the following information at a particular stage in the execution:
(gdb) p &array
$1 = (stuff (x)[2][2]) @x7fffffffe020

(gdb) x/48xb Ox7fffffffe020

ex7fffffffe@20: @x61 0x00 0x00 0x00 0x08 0x00 0x00 0x00
ex7fffffffe@28: 0x02 0x00 0x00 0x00 0x62 0x00 0x00 0x00
ex7fffffffe@30: 0x64 0x00 0x00 0x00 0x04 0x00 0x00 0x00
ex7fffffffe@38: @x63 0x04 0x40 0x00 @xed 0x03 0x00 0x00
ex7fffffffe@40: Oxc8 0xee oxff oxff 0x64 ex7f 0xee 0xee
ex7fffffffe@48: 0x17 @xab 0xee 0xee fxel 0xee 0xee 0xee

Find the value of array[1] [0] . second at this stage of the execution, i.e., what would be
printed out by the following statement? printf ("%d\n", array[1][0].second);

1005
Because of alignment, each object of type “stuff” is 12 bytes.
Due to how arrays are stored in memory,
® The array is stored as:

array[0][0], array[0][1l], array[l][0], array[l][1]
From the gdb output, we can tell that the array starts at
Ox7fffffffe020
e array[l][0] is OxT7fffffffe038 to Ox7fffffffe043
® Note: this is in hex, so Ox7fffffffe038 + 8 = 0Ox7fffffffe040
Second is an integer, and is the 5th to 8th byte of an object of type
“stuff”
® These are bytes 0x7fffffffe03c to Ox7fffffffe03f
®¢ They have the values 0Oxed, 0x03, 0x00, 0x00
® Since this system is little endian, the value is 0x000003ed

0 This is equivalent to 1005

5. The following is part of the result of the command ‘cbjdump -d’ on an executable
00000000004006dd <IronMan>:

4006dd: 55 push %rbp
4006de: 48 89 e5 mov %rsp,%rbp
4006el: 89 7d ec mov %sedi,-0x14(%rbp)
4006¢e4: 8b 45 ec mov —-0x14(%rbp) ,%eax
4006e7: cl ed 04 shl $0x4,%eax
4006ea: 89 45 fc mov %eax,—-0x4(%rbp)
4006ed: 8b 45 fc mov -0x4(%rbp) ,%eax
4006f0: 5d pop %rbp
4006f1: c3 retq
0000000000400721 <Hulk>:

400721: 55 push %rbp
400722: 48 89 e5 mov %rsp,%rbp
400725: 48 83 ec 20 sub $0x20,%rsp
400729: 48 89 7d e8 mov %rdi,-0x18(%rbp)
40072d: 48 8b 45 e8 mov -0x18(%rbp),%rax
400731: 48 89 c7 mov %Srax,%srdi
400734 : e8 27 fe ff ff callqg 400560 <atoi@plt>
400739: 89 45 fc mov %eax,—-0x4(%rbp)
40073c: 8b 45 fc mov -0x4(%rbp) ,%eax
40073f: 89 c7 mov %eax,%edi
400741: e8 97 ff ff ff callg 4006dd <IronMan>
400746: 89 45 f8 mov %eax,-0x8(%rbp)
400749: 81 7d f8 8f 01 @0 @@ cmpl $0x18f,-0x8(%rbp)
400750: 7e 10 jle 400762 <Hulk+@x41>
400752: 81 7d f8 f4 01 @0 @@ cmpl $0x1f4,-0x8(%rbp)
400759: 7f 07 jg 400762 <Hulk+@x41>
40075b: b8 01 00 00 00 mov $0x1,%eax
400760: eb @5 jmp 400767 <Hulk+0x46>
400762: b8 00 00 00 00 mov $0x0, %eax
400767 : c9 leaveq
400768: c3 retq

The declaration for the function I ronMan was: int IronMan (int scraps);

(a) What is the return value of TronMan (23) ?

368

After instructions 0x4006el and 4006e4, the input (which was stored
in %rdi) is now stored in $%eax

Instructions 0x4006e7 then shifts %eax to the left by 4

®¢ This is equivalent to multiply by 274, which is 16

23 * 16 = 368

(b) Given that the function Hulk returns 1, what do we know about the value of $edi right
before instruction 0x400741 is executed?
%edi is between 25 and 31
Since the function returns 1, we know that the jump instructions at
0x400750 and 0x400759 did not jump.
® From instructions 0x400749 and 0x400750
0 we know that we would have jumped if -0x8 (%rbp) was less than
or equal to 0x18f
0 Thus we know -0x8 (%rbp) 1s greater than 0x18f, or 399
® From instructions 0x400752 and 0x400759
0 We know that we would have jumped if -0x8 (%rbp) was greater
than 0x1f4
0 Thus we know -0x8 (%rbp) 1s less than or equal to 0x1f4, or 500
e Thus we know that -0x8 (%rbp) is between 400 and 500, inclusive
0 Thus %eax is between 400 and 500, inclusive
From the previous question, we know that IronMan multiplies inputs by
16
® We also know that the function returns a value between 400 and 500
with input %rdi
® Reversing the function, we know the input must have been between
400/16 and 500/16
Thus we know that %$rdi was between 25 and 31 right before the IronMan
function call

6. Assume a floating-point representation using 1 sign bit, 3 exponent bits, and 4 mantissa bits.
(a) Decode the 8-bit floating point 0xe7 to decimal.

-11.5

Convert: Oxe7 = 0b11100111

Separate: 1 110 0111

Sign: negative

Exponent: 0b110 = 6, bias = 27(3-1)-1 =3, 6 — 3 = 3

Mantissa: 1.0111

-1 * 0p1.0111 * 273 = -1 * 0b1011.1 = - (8 + 2 + 1 + ¥») = -11.5
(b) Encode the following numbers with the floating-point representation.

(i) -15.5

11101111

Sign: 1 (negative)

15.5 = 0b1111.1 = 0b1.1111 * 273
Encode exponent: 3 + bias = 6 = 0bl10
Encode mantissa: 1111

1 110 1111

(i) -0

10000000

(i) -1

10110000

(iv) +0

00000000

(v) oo

01110000

	Worksheet 4 Solutions

