Name:

1. What is the value of y at the end of the following two operations?
```
x = x ^ (~y);
y = y^^x;
```

2. Given the following declarations:
int $x=$ foo(); int $y=$ bar(); unsigned ux $=$ cookie();
Do these statements always evaluate to true?
(a) $x>u x \quad====>(\sim x+1)<0$
(b) ux - $2>=-2====>$ ux $<=1$
(c) $\left(x^{\wedge} y\right)^{\wedge} x==(x+y)^{\wedge}\left((x+y)^{\wedge} y\right)$
(d) $(x<0) \& \&(y<0)==(x+y)<0$
3. char** apple[5][9];
char* banana[1][9];
char strawberry[4][2];
struct ucla \{ char blue[6]; union \{ int gold; char joe[8]; \} bruin;
\} arr[4];
How many bytes of space would these declarations require?
4. Consider the following struct:
```
typedef struct {
    char first;
    int second;
    short third;
} stuff;
```

We are debugging an application using gdb on an x86-64 machine. The application has a variable called array - defined as: stuff array[2][2];

Using gdb, we find the following information at a particular stage in the execution:
[(gdb) p \&array
\$1 = (stuff (*) [2][2]) 0x7fffffffe020

Find the value of array[1] [0].second at this stage of the execution, i.e., what would be printed out by the following statement? printf("\%d\n", array[1][0].second);
5. The following is part of the result of the command 'objdump -d' on an executable

push	$\% r b p$
mov	$\% r s p, \% r b p$
mov	$\% e d i,-0 \times 14(\% r b p)$
mov	$-0 \times 14(\% r b p), \% e a x$
shl	$\$ 0 \times 4, \% e a x$
mov	$\% e a x,-0 \times 4(\% r b p)$
mov	$-0 \times 4(\% r b p), \% e a x$
pop	$\% r b p$
reta	

push \%rbp
mov \%rsp,\%rbp
sub $\$ 0 \times 20, \% r s p$
mov \%rdi,-0x18(\%rbp)
mov $-0 \times 18(\% \mathrm{rbp}), \% \mathrm{rax}$
mov \%rax,\%rdi
callq 400560 atoi@plt
mov \%eax, -0×4 (\%rbp)
mov -0x4(\%rbp), \%eax
mov \%eax,\%edi
callq 4006dd <IronMan>
mov \%eax,-0x8(\%rbp)
cmpl \$0x18f,-0x8(\%rbp)
jle 400762 <Hulk+0x41>
cmpl \$0x1f4,-0x8(\%rbp)
jg 400762 <Hulk+0x41>
mov $\$ 0 \times 1$,\%eax
jmp 400767 <Hulk+0x46>
mov $\$ 0 \times 0$,\%eax
leaveq
retq
The declaration for the function IronMan was: int IronMan(int scraps);
(a) What is the return value of IronMan (23)?
(b) Given that the function Hulk returns 1, what do we know about the value of $\%$ edi right before instruction 0×400741 is executed?
6. Assume a floating-point representation using 1 sign bit, 3 exponent bits, and 4 mantissa bits.
(a) Decode the 8 -bit floating point 0×7 to decimal.
(b) Encode the following numbers with the floating-point representation.
(i) -15.5
(ii) -0
(iii) -1
(iv) +0
(v) $+\infty$

