
Worksheet 3 Solutions
1. What will the following print out?

typedef struct {

char shookie;
int tata;
char cookie;
double chimmy;

} bts;

typedef union {

char shookie;
int tata;
char cookie;
double chimmy;

} btu;

int main(int argc, char** argv){

bts band1[7];
btu band2[7];
printf(“%d\n”, (int)sizeof(band1));
printf(“%d\n”, (int)sizeof(band2));
return 0;

}

• For the struct:
o (1 + (3) + 4 + 1 + (7) + 8) * 7 = 168
o Due to alignment, we need to add the numbers in parentheses

• For the union
o 8 * 7 = 56

2. What is the best ordering of the following data types if you want to have a struct that uses
all of them? What is this optimal size? Assume a 64-bit architecture. The best ordering here
means the ordering that will result in the optimal usage of space – there’s more than 1
answer!

char tully;
long stark;
int greyjoy;
float* lannister;
float arryn; // hint: floats are 4 bytes
double targaryen;

 struct Westeros{
// Note: this is one possible ordering
// There are many others that work as well!

 float* lannister; // ALL pointers are 8 bytes
 double targaryen; // doubles are 8 bytes
 long stark; // longs are 8 bytes
 float arryn; // floats are 4 bytes
 int greyjoy; // ints are 4 bytes
 char tully; // chars are 1 byte
 };

One simple strategy (the one used above) is to order the fields from
largest size to smallest, as structs are x-aligned, where x is the
size of the largest data type in the struct.

3. Consider the following disassembled function:
000000000040102b <phase_2>:
 40102b: 55 push %rbp
 40102c: 53 push %rbx
 40102d: 48 83 ec 28 sub $0x28,%rsp
 401031: 48 89 e6 mov %rsp,%rsi
 401034: e8 e3 03 00 00 callq 40141c <read_six_numbers>
 401039: 83 3c 24 01 cmpl $0x1,(%rsp)
 …

Right after the callq instruction is executed, what will be at the top of the stack?

401039.
● When executing a call instruction, you push the return address

onto the stack
○ The instruction pointer (%rip) points to the next

instruction to execute
○ In this case, 401039

● When you reach the ret instruction in read_six_numbers, you will
pop this address off the stack so control will return to the next
instruction in phase_2.

4. Consider the following C code:

typedef struct {
 char first;
 int second;
 short third;
 int* fourth;
} stuff;

stuff array[5];

int func0(int index, int pos, long dist) {
 char* ptr = (char*) &(array[index].first);
 ptr += pos;
 *ptr = index + dist;
 return *ptr;
}

int func1() {
 int x = func0(1, 4, 12);
 return x;
}

Clearly some code is missing - your job is to fill in the blanks! Note that the size of the blanks is
not significant. The two functions will be compiled using the following assembly code:

0000000000400492 <func0>:
 400492: 8d 04 17 lea (%rdi,%rdx,1),%eax
 400495: 48 63 ff movslq %edi,%rdi
 400498: 48 63 f6 movslq %esi,%rsi
 40049b: 48 8d 14 7f lea (%rdi,%rdi,2),%rdx
 40049f: 88 84 d6 60 10 60 00 mov %al,0x601060(%rsi,%rdx,8)
 4004a6: 0f be c0 movsbl %al,%eax
 4004a9: c3 retq

00000000004004aa <func1>:
 4004aa: c6 05 cb 0b 20 00 0d movb $0xd,0x200bcb(%rip)

60107c <array+0x1c>
 4004b1: b8 0d 00 00 00 mov $0xd,%eax
 4004b6: c3 retq

The answer can be derived by tackling func0 first, then func1
func0
● From instruction 400492, we can see that the return value is set

to %rdi + %rdx, where %rdi is index and %rdx is dist
○ %rdi is set to the first parameter, %rsi to the second

parameter, %rdx to the third
○ %eax is unchanged, until instruction 4004a6 with %al

■ This makes sense, since we’re returning the value from
dereferencing a pointer to a char, aka a single byte
(%al is a single byte)

○ Thus we know *ptr = index + dist
● From instruction 40049b:

○ %rdx is set to 3 * %rdi
○ %rdx is thus 3 * index

● From instruction 40049f:
○ 0x601060 is presumably the start of the array

■ This is confirmed in instruction 4004aa, where 60107c
is shown to be <array+0x1c>

○ The destination of instruction 40049f is thus:
■ (Start of the array) + 8 * (3 * %rdi) + pos = (start

of array) + (24 * index) + pos
○ Each object of type stuff is 24 bytes (alignment)
○ ptr from func0 is thus pointing to array[index].first

■ The “+ pos” comes from the second line of func0
func1

● (note) there is no call to func0, as this code was produced from
gcc -O

○ Optimization has not been covered yet, but in the spirit of
the problem, we needed the parameters passed to func0 to be
hidden but the return value to be known. The non-
optimization generated assembly would have done the
opposite.

○ From Week3 Lecture slides “data_examples.pdf”, students
should understand that 0x200bcb(%rip) from instruction
4004aa is location <array + 0x1c>

○ 0x1c = 28
○ Since each object of type stuff is 24 bytes, we know the

second parameter (pos) was called with value 4
■ array[1].first would be at byte 24
■ ptr += 4 would bring us to 28
■ Thus we know pos = 28 - 24 = 4

● 0xd = 13
○ Thus we know that the third parameter (dist) was called

with value 12

	Worksheet 3 Solutions

