
1. What will the following print out?

typedef struct {
char shookie;
int tata;
char cookie;
double chimmy;

} bts;

typedef union {
char shookie;
int tata;
char cookie;
double chimmy;

} btu;

int main(int argc, char** argv){
bts band1[7];
btu band2[7];
printf(“%d\n”, (int)sizeof(band1));
printf(“%d\n”, (int)sizeof(band2));
return 0;

}

For the struct:
o (1 + (3) + 4 + 1 + (7) + 8) * 7 = 168
o Due to alignment, we need to add the numbers in parentheses

For the union
o 8 * 7 = 56

2. What is the best* ordering of the following data types if you want to have a struct that
uses all of them? What is this optimal size? Assume a 64-bit architecture. The best
ordering here means the ordering that will result in the optimal usage of space – there’s
more than 1 answer!

char tully;
long stark;
int greyjoy;
float* lannister;
float arryn; // hint: floats are 4 bytes
double targaryen;

struct Westeros{
// Note: this is one possible ordering
// There are many others that work as well!
float* lannister; // ALL pointers are 8 bytes
double targaryen; // doubles are 8 bytes
long stark; // longs are 8 bytes
float arryn; // floats are 4 bytes
int greyjoy; // ints are 4 bytes
char tully; // chars are 1 byte

};

One simple strategy (the one used above) is to order the fields
from largest size to smallest, as structs are x-aligned, where
x is the size of the largest data type in the struct.

3. Consider the following disassembled function:

000000000040102b <phase_2>:
40102b: 55 push %rbp
40102c: 53 push %rbx
40102d: 48 83 ec 28 sub $0x28,%rsp
401031: 48 89 e6 mov %rsp,%rsi
401034: e8 e3 03 00 00 callq 40141c

<read_six_numbers>
401039: 83 3c 24 01 cmpl $0x1,(%rsp)
…

000000000040141c <read_six_numbers>:
…

void read_six_numbers(char *input, int *numbers);

a) What are the inputs to the read_six_numbers function? After the call to
read_six_numbers, what value will be at the top of the stack? (Hint: read_six_numbers
parses input from the first argument and writes the output to the second argument.
Example input: 1, 2, 3, 4, 5, 6).

The first argument is the location where read_six_numbers reads
the input and the second argument is a pointer to where the
parsed numbers are stored, i.e., %rsp. After read_six_numbers
processes the input, the value at the top of the stack is the
first number parsed, which is 1.

b) Right after the callq instruction has been executed (i.e., your current execution address
is 40141c), what will be at the top of the stack?

401039.
● When executing a call instruction, you push the return

address onto the stack
○ The instruction pointer (%rip) points to the next

instruction to execute
○ In this case, 401039

● When you reach the ret instruction in read_six_numbers,
you will pop this address off the stack so control will
return to the next instruction in phase_2.

4. Consider the following C code:

typedef struct {
char first;
int second;
short third;
int* fourth;

} stuff;

stuff array[5];

int func0(int index, int pos, long dist) {
char* ptr = (char*) &(array[index].first);
ptr += pos;
*ptr = index + dist;

return *ptr;
}

int func1() {
int x = func0(1, 4, 12);
return x;

}

Clearly some code is missing - your job is to fill in the blanks! Note that the size of the
blanks is not significant. The two functions will be compiled using the following assembly
code:

0000000000400492 <func0>:
400492: 8d 04 17 lea (%rdi,%rdx,1),%eax
400495: 48 63 ff movslq %edi,%rdi
400498: 48 63 f6 movslq %esi,%rsi

40049b: 48 8d 14 7f lea (%rdi,%rdi,2),%rdx
40049f: 88 84 d6 60 10 60 00 mov

%al,0x601060(%rsi,%rdx,8)
4004a6: 0f be c0 movsbl %al,%eax
4004a9: c3 retq

00000000004004aa <func1>:
4004aa: c6 05 cb 0b 20 00 0d movb $0xd,0x200bcb(%rip)

60107c <array+0x1c>
4004b1: b8 0d 00 00 00 mov $0xd,%eax
4004b6: c3 retq

The answer can be derived by tackling func0 first, then func1
func0

● From instruction 400492, we can see that the return value
is set to %rdi + %rdx, where %rdi is index and %rdx is
dist

○ %rdi is set to the first parameter, %rsi to the
second parameter, %rdx to the third

○ %eax is unchanged, until instruction 4004a6 with %al
■ This makes sense, since we’re returning the

value from dereferencing a pointer to a char,
aka a single byte (%al is a single byte)

○ Thus we know *ptr = index + dist
● From instruction 40049b:

○ %rdx is set to 3 * %rdi
○ %rdx is thus 3 * index

● From instruction 40049f:
○ 0x601060 is presumably the start of the array

■ This is confirmed in instruction 4004aa, where
60107c is shown to be <array+0x1c>

○ The destination of instruction 40049f is thus:
■ (Start of the array) +

8 * (3 * %rdi) +
pos

■ = (start of array) + (24 * index) + pos
○ Each object of type stuff is 24 bytes (alignment)
○ ptr from func0 is thus pointing to array[index].first

■ The “+ pos” comes from the second line of func0
func1

● (note) there is no call to func0, as this code was produced
from gcc -O

○ Optimization has not been covered yet, but in the
spirit of the problem, we needed the parameters
passed to func0 to be hidden but the return value to
be known. The non-optimization generated assembly
would have done the opposite.

○ From Week3 Lecture slides “data_examples.pdf”,
students should understand that 0x200bcb(%rip) from
instruction 4004aa is location <array + 0x1c>

○ 0x1c = 28
○ Since each object of type stuff is 24 bytes, we know

the second parameter (pos) was called with value 4
■ array[1].first would be at byte 24
■ ptr += 4 would bring us to 28
■ Thus we know pos = 28 - 24 = 4

● 0xd = 13
○ Thus we know that the third parameter (dist) was

called with value 12

