Name: SOLUTIONS UID: CS 33

1. mov vs lea?

Describe the difference between the following;:

movqg (%rdx), %rax
leaqg (%rdx), %rax

movq takes the contents of what’s stored in register %rdx and moves it to %rax. leaq

computes the load effective address and stores it in %rax. leaq analogous to returning a
pointer, whereas movq is analogous to returning a dereferenced pointer.

2. Instruction Junction

a. What would be the corresponding instruction to move 64 bits of data from register %rax
to register %rex?

movq %rax, %rex
b. What would be the corresponding instruction to move 64 bits of data from the memory
location stored in register %rax to register %rcx?

movq (%rax), %rex

3. What was Compiled?

Which of the functions cooll, cool2, cool3 would compile into this assembly code?

movl
cmpl
jge
movl
.L4:
ret

%$eax
$edi

%$esi,
$eax,

.L4

$edi, %eax

int cooll (int a,

{

int D)

if (b < a)
return b;
else
return aj;

}

int

cool2 (int a,

if (a < b)
return a;
else
return b;

int D)

int

cool3 (int a, int b)
unsigned ub = (
unsigned) b;
if (ub < a)
return a;
else
return ub;

cool2 was compiled

e Arguments passed to a function is stored in the %edi, %esi, etc registers

o %edi is a and %esi is b
When comparing, we compare as cmp Two One

o Thus the instruction jge is checking if %edi is greater than or equal to %eax
o This is essentially checking if @ > b, which is the else condition

o We return b in the else case

o We return a in the if case

If we don’t jump, we update %eax to %edi

Thus, this matches the cool2 function
This question was inspired by a previous midterm.

We can observe that when we do jump, %eax is not updated

4. Operand Form Practice

Assume the following values are stored in the indicated registers and memory addresses.

Address Value Register Value
0x104 0x34 Yorax 0x104
0x108 0xCC Yorex 0x5
0x10C 0x19 Yordx 0x3
0x110 0x42 Yorbx 0x4
Fill in the table for the indicated operands:
Operand Value Value (if lea)
$0x110 0x110 —
(immediate value) (illegal syntax: must be
memory addressing)
Yorax 0x104
(value stored in %rax) (illegal syntax: must be
memory addressing)
0x110 0x42 —
(value stored at memory | (illegal syntax: must be
address 02110) memory addressing)
(%rax) 0x34 0x104
(%orax = 02104, (%rax is the base
memory[0z104] = 0x34) address, thus return
02104)
8(%rax) 0x19 0x10C
(%oraz = 0x104, (02104 + 8 = 0210C")
02104 + 8 = 0£10C,
memory[0z10C] = 0x19)

02104 4+ 024 = 02108,
memory[0z108] =

Operand Value Value (if lea)
(%orax, %rbx) 0xCC 0x108
(Y%orax = 02104, %rbx = | (02104 + 024 = 02108)
0x4,

02100+ (0z4-2) = 02108,
memory[0z108] =

0xCC)

3(%orax, %rex) 0x19 0x10C

(Y%orax = 02104, %rcx = (02104 + 025+ 3 =

05, 0210C")

3+0x104+0x5 = 0210C,

memory[0z10C]| = 0219)
256(, %rbx, 2) 0xCC 0x108

(Y%orbx = 04, (256 + 2 - %rbx = 0x108)

04, 02104 + (0x4 - 2) =
0210C, memory[0z10C
= 0z19)

0xCC)
(%orax, %rbx, 2) 0x19 0x10C
(%orax = 02104, %rbx = (Y%orax +

2 - %rbx = 0210C")

$ denotes immediates

Note: any numbers starting with ”0x” are hexadecimal numbers!!

All of the operands can be evaluated using the specific formulas on page 181 in the textbook
More generally, whenever you see an address of the form D(ry,r;, s), where D is an num-
ber, r, and r; are registers, and s is either 1,2,4, or 8, you can use the following formula:

D + R[rb] + R[ri] x s

If D is missing, assume D == 0
If 7, is missing, assume 7, == 0
If r, is missing, assume ry == 0

If s is missing, assume s ==

e For more practice, try practice problem 3.1 on page 182 of the textbook

5. Disassembled Function

Consider the following disassembled function:

000000000040102b <phase_2>:

40102b:
40102c:
40102d:
401031:
401034:
401039:

55
53
48
48
e8
83

83
89
e3
3c

ec
eb6
03
24

push %rbp

push %rbx
28 sub $0x28, %rsp

mov $rsp,%rsi
00 00 callg 40141c <read_six_numbers>
01 cmpl $0x1, (%$rsp)

(a) Assume %rsp initially has a value of 0x138. Draw the stack (see example diagram
below) for the execution of <phase_2>, updating the stack and register values as
necessary after each line.

after 40102b after 40102c
STACK STACK
0x138 high 0x138 high
Frsp srbp srbp
™S 0x130 0x130
srsp srbx
0x128 ™S 0x128
(some) registers (some) registers
0x120 0x120
$rsi $rsi
0x118 0x118
grip 0x40102c grip 0x40102d
0x110 0x110
0x108 0x108
0x100 0x100
OxF8 low OxF8 low

after 40102d

0x138
0x130
0x128
0x120
0x118
0x110
0x108
$rsp

™ 0x100

OxF8

STACK

srbp

$rbx

high

(some)

registers

$rsi

%rip

0x401031

after 401034

low

0x138

0x130

0x128

0x120

0x118

0x110

0x108

0x100

srsp

0xF8

STACK

srbp

Srbx

Dx401039

™~ 0x100

high

low

after 401031

STACK
0x138 high
srbp
0x130
Srbx
0x128
(some) registers
0x120
$rsi 0x100
0x118
$rip 0x401034
0x110
0x108
0xF8 low
(some) registers
$rsi 0x100
Srip 0x40104c

b) Right after the callqg instruction has been executed, what are the values of %rsp,
g
%rsi, and %rip?

e Recall: pushing onto the stack DECREMENTS %rsp

e after 401034 (callq):
o the return address (401039) gets pushed

o %rip gets set to the callq address, %rip = 40141c
e Overall, after the callq insn the values are as follows:
o %rsp = 0xF8, %rip = 40141¢, Y%rsi = 02100

Bonus: Invalid mov Instructions
Explain why these instructions would not be found in an assembly program.

a. movl %eax, %rdx

destination operand has the incorrect size

b. movb %di, 8 (%rdx)

mismatch between instruction suffix (b, 1 byte) and size of register %di (2 bytes)

c. movqg (%rsi), 8 (%rbp)

source and destination for mov cannot both be memory references, (i.e., cannot read and
write to memory in the same instruction)

d. movw S$SOxFF, (%eax)

%eax (only 32 bits) cannot be used as an address register in x86-64

Bonus: Condition Codes and Jumps

Assume the addresses and registers are in the same state as in Problem 4. Does the following

code result in a jump to .L27

leaqg (%rax, %rbx), %rdi

cmpg $0x100, %rdi

jg .L2

Yes.

e First line will put 02104 + 0z4 into %rdi

e Second line sets condition codes according to 0x108-02100, which sets no condition codes

e Since jg is evaluated as (~ (SF~ OF))&(~ ZF) which in this case is evaluates to 1, we
will jump

