
Name: SOLUTIONS UID: CS 33

1. mov vs lea?

Describe the difference between the following:

movq (%rdx), %rax
leaq (%rdx), %rax

movq takes the contents of what’s stored in register %rdx and moves it to %rax. leaq
computes the load effective address and stores it in %rax. leaq analogous to returning a
pointer, whereas movq is analogous to returning a dereferenced pointer.

2. Instruction Junction

a. What would be the corresponding instruction to move 64 bits of data from register %rax
to register %rcx?

movq %rax, %rcx

b. What would be the corresponding instruction to move 64 bits of data from the memory
location stored in register %rax to register %rcx?

movq (%rax), %rcx

1

3. What was Compiled?

Which of the functions cool1, cool2, cool3 would compile into this assembly code?

movl %esi, %eax
cmpl %eax, %edi
jge .L4
movl %edi, %eax
.L4:
ret

int cool1(int a, int b)
{

if (b < a)
return b;

else
return a;

}

int cool2(int a, int b)
{

if (a < b)
return a;

else
return b;

}

int cool3(int a, int b)
{

unsigned ub = (
unsigned) b;

if (ub < a)
return a;

else
return ub;

}

cool2 was compiled
• Arguments passed to a function is stored in the %edi, %esi, etc registers

◦ %edi is a and %esi is b
• When comparing, we compare as cmp Two One

◦ Thus the instruction jge is checking if %edi is greater than or equal to %eax
◦ This is essentially checking if a ≥ b, which is the else condition

• We can observe that when we do jump, %eax is not updated
◦ We return b in the else case

• If we don’t jump, we update %eax to %edi
◦ We return a in the if case

• Thus, this matches the cool2 function
• This question was inspired by a previous midterm.

2

4. Operand Form Practice

Assume the following values are stored in the indicated registers and memory addresses.

Address Value Register Value
0x104 0x34 %rax 0x104
0x108 0xCC %rcx 0x5
0x10C 0x19 %rdx 0x3
0x110 0x42 %rbx 0x4

Fill in the table for the indicated operands:

Operand Value Value (if lea)

$0x110 0x110
(immediate value)

—
(illegal syntax: must be
memory addressing)

%rax 0x104
(value stored in %rax)

—
(illegal syntax: must be
memory addressing)

0x110 0x42
(value stored at memory

address 0x110)

—
(illegal syntax: must be
memory addressing)

(%rax) 0x34
(%rax = 0x104,

memory[0x104] = 0x34)

0x104
(%rax is the base

address, thus return
0x104)

8(%rax) 0x19
(%rax = 0x104,

0x104 + 8 = 0x10C,
memory[0x10C] = 0x19)

0x10C
(0x104 + 8 = 0x10C)

3

Operand Value Value (if lea)

(%rax, %rbx) 0xCC
(%rax = 0x104, %rbx =

0x4,
0x104 + 0x4 = 0x108,
memory[0x108] =

0xCC)

0x108
(0x104 + 0x4 = 0x108)

3(%rax, %rcx) 0x19
(%rax = 0x104, %rcx =

0x5,
3+0x104+0x5 = 0x10C,
memory[0x10C] = 0x19)

0x10C
(0x104 + 0x5 + 3 =

0x10C)

256(, %rbx, 2) 0xCC
(%rbx = 0x4,

0x100+(0x4·2) = 0x108,
memory[0x108] =

0xCC)

0x108
(256 + 2 ·%rbx = 0x108)

(%rax, %rbx, 2) 0x19
(%rax = 0x104, %rbx =
0x4, 0x104 + (0x4 · 2) =
0x10C, memory[0x10C]

= 0x19)

0x10C
(%rax +

2 ·%rbx = 0x10C)

• $ denotes immediates
• Note: any numbers starting with ”0x” are hexadecimal numbers!!
• All of the operands can be evaluated using the specific formulas on page 181 in the textbook
• More generally, whenever you see an address of the form D(rb, ri, s), where D is an num-
ber, rb and ri are registers, and s is either 1,2,4, or 8, you can use the following formula:

D +R[rb] +R[ri] ∗ s

If D is missing, assume D == 0
If rb is missing, assume rb == 0
If rs is missing, assume rs == 0
If s is missing, assume s == 0

• For more practice, try practice problem 3.1 on page 182 of the textbook

4

5. Disassembled Function

Consider the following disassembled function:

000000000040102b <phase_2>:
40102b: 55 push %rbp
40102c: 53 push %rbx
40102d: 48 83 ec 28 sub $0x28,%rsp
401031: 48 89 e6 mov %rsp,%rsi
401034: e8 e3 03 00 00 callq 40141c <read_six_numbers>
401039: 83 3c 24 01 cmpl $0x1,(%rsp)

(a) Assume %rsp initially has a value of 0x138. Draw the stack (see example diagram
below) for the execution of <phase 2>, updating the stack and register values as
necessary after each line.

after 40102b
STACK

0xF8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138
%rsp %rbp

high

low

%rsi

%rip 0x40102c

(some) registers

after 40102c
STACK

0xF8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

%rsp

%rbp

%rbx

high

low

%rsi

%rip 0x40102d

(some) registers

5

after 40102d
STACK

0xF8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

%rsp

%rbp

%rbx

high

low

%rsi

%rip 0x401031

(some) registers

after 401031
STACK

0xF8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

%rsp

%rbp

%rbx

high

low

%rsi 0x100

%rip 0x401034

(some) registers

after 401034
STACK

0xF8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

%rsp

%rbp

%rbx

0x401039

high

low

%rsi 0x100

%rip 0x40104c

(some) registers

(b) Right after the callq instruction has been executed, what are the values of %rsp,
%rsi, and %rip?

• Recall: pushing onto the stack DECREMENTS %rsp
• after 401034 (callq):

◦ the return address (401039) gets pushed
◦ %rip gets set to the callq address, %rip = 40141c

• Overall, after the callq insn the values are as follows:
◦ %rsp = 0xF8, %rip = 40141c, %rsi = 0x100

6

Bonus: Invalid mov Instructions

Explain why these instructions would not be found in an assembly program.

a. movl %eax, %rdx

destination operand has the incorrect size

b. movb %di, 8(%rdx)

mismatch between instruction suffix (b, 1 byte) and size of register %di (2 bytes)

c. movq (%rsi), 8(%rbp)

source and destination for mov cannot both be memory references, (i.e., cannot read and
write to memory in the same instruction)

d. movw $0xFF, (%eax)

%eax (only 32 bits) cannot be used as an address register in x86-64

Bonus: Condition Codes and Jumps

Assume the addresses and registers are in the same state as in Problem 4. Does the following
code result in a jump to .L2?

leaq (%rax, %rbx), %rdi
cmpq $0x100, %rdi
jg .L2

Yes.
• First line will put 0x104 + 0x4 into %rdi
• Second line sets condition codes according to 0x108–0x100, which sets no condition codes
• Since jg is evaluated as (∼ (SF ̂OF))&(∼ ZF) which in this case is evaluates to 1, we
will jump

7

