
Worksheet 2 Solutions
1. mov vs lea - describe the difference between the following:

movq (%rdx), %rax
leaq (%rdx), %rax

movq takes the contents of what’s stored in register %rdx and moves it
to %rax. leaq computes the load effective address and stores it
in %rax. leaq analogous to returning a pointer, whereas movq is
analogous to returning a dereferenced pointer.

2. Invalid mov instructions: explain why these instructions would not be found in an assembly

program.

(a) movl %eax, %rdx
destination operand has the incorrect size

(b) movb %di, 8(%rdx)
mismatch between instruction suffix (b, 1 byte) and size of
register %di (2 bytes)

(c) movq (%rsi), 8(%rbp)
source and destination for mov cannot both be memory references,
i.e., cannot read and write to memory in the same instruction

(d) movw $0xFF, (%eax)
%eax (only 32 bits) cannot be used as an address register in x86-
64

3.

(a) What would be the corresponding instruction to move 64 bits of data from register %rax
to register %rcx?
movq %rax, %rcx

(b) What would be the corresponding instruction to move 64 bits of data from the memory

location stored in register %rax to register %rcx?
movq (%rax), %rcx

4. Operand Form Practice (see page 181 in textbook)

Assume the following values are stored in the indicated registers/memory addresses.
Address Value Register Value

0x104 0x34 %rax 0x104

0x108 0xCC %rcx 0x5

0x10C 0x19 %rdx 0x3

0x110 0x42 %rbx 0x4

Fill in the table for the indicated operands:

Operand Value Operand Value

$0x110
0x110

(immediate
value)

3(%rax, %rcx)

0x19
(value in %rax is 0x104,
value in %rcx is 0x5, 3 +
0x104 + 0x5 = 0x10C, value

in 0x10C is 0x19)

%rax
0x104

(value stored
in %rax)

256(, %rbx, 2)

0xCC
(value in %rbx is 0x4, 256

in hex is 0x100,
0x100+(0x4 * 2) = 0x108,
value in memory address

0x108 is 0xCC)

0x110
0x42

(value stored
in memory

address 0x110)
(%rax, %rbx, 2)

0x19
(value in %rax is 0x104,
value in %rbx is 0x4,
0x104+(0x4*2) = 0x10C,
value in memory address

0x10C is 0x19)

(%rax) 0x34
(%rax holds 0x104, memory address 0x104 holds 0x34)

8(%rax)
0x19

(%rax holds 0x104, 8 + 0x104 = 0x10C, value in memory
address 0x10C is 0x19)

(%rax, %rbx)
0xCC

(value in %rax is 0x104, value in %rbx is 0x4, 0x104 +
0x4 = 0x108, value in memory address 0x108 is 0xCC)

• $ denotes immediates
• Note: any numbers starting with "0x" are hexadecimal

numbers!!
• All of the operands can be evaluated using the specific

formulas on page 181 in the textbook
• More generally, whenever you see an address of the form

D(rb,ri,s), where D is an number, rb and ri are registers,
and s is either 1,2,4, or 8, you can use the following
formula:

D + R[rb] + R[ri]*s

If D is missing, assume D == 0
If rb is missing, assume rb == 0
If rs is missing, assume rs == 0
If s is missing, assume s == 1

• For more practice, try practice problem 3.1 on page 182 of
the textbook

5. Condition codes and jumps: assume the addresses and registers are in the same
state as in the previous problem. Does the following code result in a jump to .L2?

leaq (%rax, %rbx), %rdi
cmpq $0x100, %rdi
jg .L2

Yes.
1. First line will put 0x104 + 0x4 into %rdi
2. Second line sets condition codes according to 0x108 – 0x100,

which sets no condition codes
3. Since jg is evaluated as ~(SF^OF)&(~ZF) which in this case is

evaluates to 1, we will jump

6. Which of the functions cool1, cool2, or cool3 would compile into this assembly code?

movl %esi, %eax
cmpl %eax, %edx
jge .L4
movl %edx, %eax

.L4:
ret

int cool1(int a, int b) {

if (b < a)
 return b;
else
 return a;

}

int cool2(int a, int b) {

if (a < b)
 return a;
else
 return b;

}

int cool3(int a, int b) {

unsigned ub = (unsigned) b;
if (ub < a)
 return a;
else
 return ub;

}
cool2

• Arguments passed to a function is stored in the %edi, %esi, etc
registers

o %edi is a and %esi is b
• When comparing, we compare as cmp Two One

o Thus the instruction jge is checking if %edi is greater
than or equal to %eax

o This is essentially checking if a >= b, which is the else
condition

• We can observe that when we do jump, %eax is not updated
o We return b in the else case

• If we don’t jump, we update %eax to %edi
o We return a in the if case

• Thus cool2
• This question was inspired by a previous midterm

7. Consider the following disassembled function:
000000000040102b <phase_2>:
 40102b: 55 push %rbp
 40102c: 53 push %rbx
 40102d: 48 83 ec 28 sub $0x28,%rsp
 401031: 48 89 e6 mov %rsp,%rsi
 401034: e8 e3 03 00 00 callq 40141c <read_six_numbers>
 401039: 83 3c 24 01 cmpl $0x1,(%rsp)
 …

(a) Assume %rsp initially has a value of 0x138. Draw the stack (see example diagram below)
for the execution of <phase_2>, updating the stack and register values after each line is
executed.

(b) Right after the callq instruction has been executed, what are the values of %rsp, %rsi,
and %rip?

● Recall: pushing onto the stack DECREMENTS %rsp
● after 401034 (callq):

○ the return address (401039) gets pushed
○ %rip gets set to the callq address, %rip = 40141c

● Overall, after the callq insn the values are as follows:
○ %rsp = 0xF8
○ %rip = 40141c
○ %rsi = 0x100

	Worksheet 2 Solutions

