Worksheet 2 Solutions

1. mov vs lea - describe the difference between the following:

movqg (%rdx), %rax
leag (%rdx), %rax

movqg takes the contents of what’s stored in register %rdx and moves it
to %$rax. leaq computes the load effective address and stores it

in %rax. leaqg analogous to returning a pointer, whereas movqg 1is
analogous to returning a dereferenced pointer.

2. Invalid mov instructions: explain why these instructions would not be found in an assembly
program.

(@) movl %eax, %rdx
destination operand has the incorrect size

(b) movb %di, 8 (%rdx)
mismatch between instruction suffix (b, 1 byte) and size of
register %di (2 bytes)

(c) movg (%rsi), 8 (%rbp)
source and destination for mov cannot both be memory references,
i.e., cannot read and write to memory in the same instruction

(d) movw SOxFF, (%eax)
%eax (only 32 bits) cannot be used as an address register in x86-
64

(a) What would be the corresponding instruction to move 64 bits of data from register $rax
to register $rcx?
movqg %$rax, $%$rcx

(b) What would be the corresponding instruction to move 64 bits of data from the memory
location stored in register $rax to register $rcx?
movqg (%rax), $%Srcx

4. Operand Form Practice (see page 181 in textbook)

Assume the following values are stored in the indicated registers/memory addresses.

Address Value
0x104 0x34
0x108 0xCC
0x10C 0x19
0x110 0x42

Reqister

$rax
$rcx
$rdx

$rbx

Fill in the table for the indicated operands:

Operand Value
0x110
$S0x110 (immediate
value)
0x104
$rax (value stored
in %$rax)
0x42
0x110 (value stored

in memory
address 0x110)

Operand

3(%rax, %rcx)

256 (, %rbx, 2)

(%rax, %rbx, 2)

Value
0x104
0x5
0x3

0x4

0x19
(value in %rax is 0x104,
value in %rcx is 0x5, 3 +
0x104 + 0x5 = 0x10C, wvalue
in 0x10C is 0x19)

0OxCC
(value in %rbx is 0x4,
in hex is 0x100,
0x100+ (0x4 * 2) = 0x108,
value in memory address
0x108 is 0xCC)

256

0x19
(value in %rax is 0x104,
value in %rbx is 0x4,
0x104+ (0x4*2) = 0x10C,
value in memory address
0x10C is 0x19)

0x34

(srax) (3rax holds 0x104, memory address 0x104 holds 0x34)
0x19
8 (%$rax) ($rax holds 0x104, 8 + 0x104 = 0x10C, value in memory
address 0x10C 1is 0x19)
0xCC
(%rax, %rbx) (value in %Srax 1is 0x104, value in %rbx is 0x4, 0x104 +
Ox4 = 0x108, wvalue in memory address 0x108 is 0xCC)

$ denotes immediates

e Note: any numbers starting with "O0x" are hexadecimal
numbers!!

e All of the operands can be evaluated using the specific
formulas on page 181 in the textbook

e More generally, whenever you see an address of the form

D(r,,r.,,s), where D is an number, r, and r, are registers,

and s is either 1,2,4, or 8, you can use the following

formula:

D + R[r.] + R[r.]*s

If D is missing, assume D == 0
If r. is missing, assume r, ==
If r, is missing, assume r. ==
If s is missing, assume s == 1

e For more practice, try practice problem 3.1 on page 182 of
the textbook

0
0

Condition codes and jumps: assume the addresses and registers are in the same
state as in the previous problem. Does the following code result in a jump to .L27?

leag (%rax, %rbx), %$rdi
cmpg $0x100, %rdi
jg .L2

Yes.

1. First line will put 0x104 + 0x4 into %rdi

2. Second line sets condition codes according to 0x108 - 0x100,

which sets no condition codes

3. Since jg 1is evaluated as ~(SF"OF) & (~ZF) which in this case is

evaluates to 1, we will jump

6. Which of the functions cool1, cool2, or cool3 would compile into this assembly code?

movl %esi, %eax

cmpl %eax, %edx

joge .L4

movl %edx, %eax
.L4:

ret

int cooll (int a, int b) {
if (b < a)
return b;
else
return a;

int cool2(int a, int b) {

if ((a < b))
return a;
else

return b;

int cool3 (int a, int b) {
unsigned ub = (unsigned) b;
if (ub < a)
return a;
else
return ub;

}
cool?2
e Arguments passed to a function is stored in the %edi, %esi, etc
registers
o %edi is a and %esi is Db
e When comparing, we compare as cmp Two One
o Thus the instruction jge is checking if %edi is greater
than or equal to %eax
o This is essentially checking if a >= b, which is the else
condition
e We can observe that when we do jump, %eax is not updated
o We return b in the else case
e If we don’t jump, we update %eax to %edi
o We return a in the if case
e Thus cool2
e This question was inspired by a previous midterm

7. Consider the following disassembled function:
000000000040102b <phase 2>:
40102b:
40102c:
40102d:
401031:
401034:
401039:

55
53
48 83 ec
48 89 e6
e8 e3 03
83 3c 24

28

00
01

push
push
sub
mov
00 callg
cmpl

Srbp

Srbx

$0x28, %rsp

%rsp, %rsi

40141c <read six numbers>
$0x1, ($rsp)

(a) Assume %rsp initially has a value of 0x138. Draw the stack (see example diagram below)
for the execution of <phase 2>, updating the stack and register values after each line is

executed.

%rsp— Ox 158 —

STACK

Ox (30—

Ox a8 —

Ox320—

Ox118

Ox 10—

Ox | 08—

O0x100

Ox F8 —

high
(some) registers
WGTSi
Yorip
low

(b) Right after the callq instruction has been executed, what are the values of $rsp, %rsi,
and $rip?

® Recall:

e after 401034 (callq):

@)
O

® Overall,

@)

@)

@)

the return address
$rip gets set to the callg address,

srsp
rip

$rsi

OxXF8
40141c
0x100

pushing onto the stack DECREMENTS %rsp

(401039) gets pushed

$rip = 40141lc

after the callg insn the values are as follows:

STACK

STACK . A
O tho— ‘lorbp high Ox 158 °forbp e
%csp—> O X 130— Ox 1M
Oxlag— %rsp— 0x 123 = (some) registers
%% rsi
g: : ?g (suzr::) registers (()): : ?g % rip| 0x40l03d
0x110 Y% rip| OcHDIO AT 0x110
Ox | 08— Ox (0%
0x100 O0x100
Dy B == low big P8 — low
STALK Lin STACK |
Ox1%%8 o Ox 138 — high
Ox130— = Ox 30— *forbp
| ocbX X °/orbx ‘
gx I;g (some) registers Oxia% (some) registers
X Fﬂif_____ﬁ 0x 120 %rsi| 0X100
Ox 1\ 8 % rip| Oxoionl 0: 1 8 "/o:'?p Op4010%Y
AEF— SR100 %esp— 0x 100
Ox F§ — .
low Ox F8 low
STACK .
Ox1%8 — high
*lorbp
DlB0— /s tbx A
0x1a% ~ (some) registers
0x120 %rsi] 0X100
Ox118 Yrip| Ox401dle
OxI110
Ox | 0%
0x100
%rsp— Ox F8 — 0x401034 —_—

	Worksheet 2 Solutions

