
Name: UID:

For Discussion Credit, fill out following attendance sheet:
https://tinyurl.com/cs33f25week10

1. Single Choice

For the following questions, select the best option:

a. Which of the following is the best justification for using the middle bits of an address as
the set index into a cache rather than the most significant bits?

(a) Indexing with the most significant bits would necessitate a smaller cache than is
possible with middle-bit indexing, resulting in generally worse cache performance.

(b) It is impossible to design a system that uses the most significant bits of an address
as the set index.

(c) The process of determining whether a cache access will result in a hit or a miss is
faster using middle-bit indexing.

(d) A program with good spatial locality is likely to make more efficient use of the cache
with middle-bit indexing than with high-bit indexing.

b. When you print the address of a variable from C, what kind of address is that?

(a) Local Address

(b) Physical Address

(c) Virtual Address

(d) Home Address

c. For a floating point number, what would be an effect of allocating more bits to the
exponent part by taking them from the fraction part?

(a) You could represent fewer numbers, but they could be much larger.

(b) You could represent the same numbers, but with more decimal places.

(c) You could represent larger and small numbers, but with less precision.

(d) Some previously representable numbers would now round to infinity.

1

https://tinyurl.com/cs33f25week10
https://tinyurl.com/cs33f25week10

d. The following code is parallelized with 4 threads. Does the following code snippet contain
a race condition? If there is a race condition, what synchronization tool could remove
the race condition? (assume the function is called in a similar to the thread lab)

1 int sum = 0;
2 int local_sum[4] = {0, 0, 0, 0}
3 double sum(double a[N], int thread_id) {
4 for (int i = thread_id * (n/4); i < (thread_id + 1) * (n/4)) {
5 local_sum[thread_id] += a[i];
6 }
7

8 if (thread_id == 0) {
9 sum = local_sum[0] + local_sum[1]

10 + local_sum[2] + local_sum[3];
11 }
12 }

(a) There is no race condition

(b) Atomics

(c) Semaphore

(d) Mutex

(e) Barrier

2. Deadlock or Not?

Can the following program deadlock? Why or why not?

Initially: a = 1, b = 1, c = 1

Thread 1: Thread 2:
P(a) P(c)
P(b) P(b)
V(b) V(b)
P(c) V(c)
V(c)
V(a)

2

3. Miss-ed Ya?

Consider a directed mapped cache of size 64K with block size of 16 bytes. Furthermore, the
cache is write-back and write-allocate. You will calculate the miss rate for the following code
using this cache. Remember that sizeof(int) == 4. Assume that the cache starts empty and
that local variables and computations take place completely within the registers and do not
spill onto the stack.

Now consider the following code to copy one matrix to another. Assume that the src matrix
starts at address 0 and the dest matrix immediately follows it.

1 double copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS]) {
2 for (int i = 0; i < ROWS; i++) {
3 for (int j = 0; j < COLS; j++) {
4 dest[i][j] = src[i][j];
5 }
6 }
7 }

a. What is the cache miss rate if ROWS = 128 and COLS = 128?

Miss Rate = %

b. What is the cache miss rate if ROWS = 128 and COLS = 192

Miss Rate = %

c. What is the cache miss rate if ROWS = 128 and COLS = 256

Miss Rate = %

3

4. Stack Overflow

Alright, you’re a hacker now and you happen to have an inside source at a company
that can provide you with assembly for the company’s administrative code. The code is
typically air tight but your source tells you a rookie programmer, Alex, was just hired
and that their code has vulnerabilities and no OS protections (Alex is not the best at
their job). Specifically, your source provides you with this snippet of assembly that is
in charge of taking in a user password attempt as well as checking whether the user has
an existing password or not (why these two tasks are in one function is beyond me, but
Alex is a rookie).

1 00000000086012b4 <get_attempt_and_check_null_password>:
2 # first argument is user password
3 86012b4: 48 83 ec 38 sub $0x38, %rsp
4 86012b8: 48 89 fd mov %rdi, %rbp
5 86012bb: 48 89 e7 mov %rsp, %rdi
6 86012be: e8 38 02 00 00 callq 0x501e2b <Gets> # looks familiar?
7 86012c3: 48 89 ef mov %rbp, %rdi
8 86012c6: e8 38 ff ff ff callq 0x702ee3 <Null_Pw_Check> # important?
9 86012cb: b8 01 00 00 00 mov $0x1, %eax

10 86012d0: 48 83 c4 38 add $0x38, %rsp
11 86012d4: c3 retq

Your inside source also informs you of the existence of the following function:

1 0000000004b023e4 <Print_String_Exit>:
2 ... # Prints whatever string is passed in
3 ... # as second arg and exits with value of
4 ... # first arg

Lastly, your source informs you that rsp will be set to

0xFF FF FF FF 57 4E 3B 52

when entering the snippet in the first image (this is a really good source).

a. Assuming you acquired an individual’s username information, what string
will allow you to view their password?

Exploit Code (7 bytes):

1 48 89 ee mov %rbp, %rsi # password to 2nd arg
2 48 31 ff xor %rdi, %rdi # exit code = 0
3 c3 ret # return to address on stack

4

Sadly, before this code was able to be deployed Alex’s supervisor saw it and angrily
told Alex to fix it and explain to them that somebody could inject executable code onto
the stack and cause problems, as well as judging Alex for creating such an impractical
function. Alex, narrowing in on the term executable code (and not really listening to
anything else that was said) simply turned on an OS feature that made the stack non-
executable. Luckily for you, your inside source is a good one and has provided you
with the following farm in order to circumnavigate this issue.

1 00000000a576f3e2 <good_function>:
2 ...
3 a576f420: b8 48 89 fc 90 some instr
4 a576f425: c3 retq
5
6 00000000e2e2e2e2 <some_function>:
7 ...
8 e2e2efff: c7 09 07 48 89 ca some instr
9 e2e2e305: c3 retq

10
11 0000000042013122 <bad_function>:
12 ...
13 42013122: c6 48 89 d6 20 c0 some instr
14 42013128: c3 retq

1 00000000052ea100 <this_function>:
2 ...
3 52ea116: 8d 87 48 89 f9 90 some instr
4 52ea11c: c3 retq
5
6 00000000c462a204 <that_function>:
7 ...
8 c462a24c: c7 07 48 89 e6 90 some instr
9 c462a212: c3 retq

10
11 00000000ffffff00 <f_function>:
12 ...
13 100000f0: b8 48 89 fe 20 d9 some instr
14 100000f6: c3 retq

mov Instructions:

Hex Bytes Instruction
48 89 fc mov %rdi, %rsp
48 89 f9 mov %rdi, %rcx
48 89 ca mov %rcx, %rdx
48 89 d6 mov %rdx, %rsi
48 89 e6 mov %rsp, %rsi
48 89 fe mov %rdi, %rsi

Other Instructions:

Hex Bytes Instruction
90 nop
20 c0 and %al, %al
20 d9 and %bl, %cl

b. What string will still allow you to view the user’s password?

5

Alright, at this point you are almost hit by a car and, having narrowly avoided death,
decide that being a hacker is not the right thing to do. You turn a new leaf and want to
help Alex before they are ultimately fired.

c. What methods can you offer to Alex in order to prevent people from abusing
the code (although you are not allowed to tell Alex to get rid of the impractical
combination of getting input and checking password existence because that
would hurt Alex’s feelings)?

5. Code Optimization/Performance

Suppose we wish to write a function to evaluate a polynomial, where a polynomial of
degree n is defined to have a set of coefficients a0, a1, a2, . . . , an. For a value x, we evaluate
the polynomial by computing

a0 + a1x+ a2x
2 + · · ·+ anx

n.

This evaluation can be implemented by the following function, having as arguments an
array of coefficients a, a value x, and the polynomial degree degree (the value n in
Equation 5.2). In this function, we compute both the successive terms of the equation
and the successive powers of x within a single loop:

1 double poly(double a[], double x, long degree) {
2 double result = 0;
3 double xpwr = 1;
4 for (long i = 0; i <= degree; i++) {
5 result += a[i] * xpwr;
6 xpwr = x * xpwr;
7 }
8 return result;
9 }

6

a. For degree n, how many additions and how many multiplications does this code perform?

b. On our reference machine, with arithmetic operations having the latencies shown in the
figure below, we measure the CPE for this function to be 5.00. Explain how this CPE
arises based on the data dependencies formed between iterations due to the operations
implementing lines 7–8 of the function (code inside the for loop).

Operation
Integer Floating point

Latency Issue Capacity Latency Issue Capacity
Addition 1 1 4 3 1 1

Multiplication 3 1 1 5 1 2
Division 3–30 3–30 1 3–15 3–15 1

7

6. Memory Storage

Consider the following linked-list traversal function, where all linked list items have been
allocated dynamically (by calling malloc).

1 struct linked_list;
2

3 long long int total=10000;
4

5 typedef struct linked_list {
6 struct linked_list* next;
7 long long int value;
8 } linked_list;
9

10 long long int* traverse(linked_list* root) {
11 linked_list* current = root;
12 int total=0;
13

14 while(current->next) {
15 total += current->value;
16 current = current->next;
17 }
18 return &total;
19 }

Variables can be in global memory, the stack, the heap, text, external libraries, data, or in
registers. What is the most likely location of each of the following variables? (be as specific
as possible) (6pts)

(a) total on line 2:

(b) root on line 9:

(c) *root on line 9:

(d) current on line 15:

(e) total on line 17:

(f) &total on line 17:

(g) The assembly instructions:

8

