Worksheet 9 Name:

uID:

Q3.

Which of the following is the best justification for using the middle bits of an address as the set index
into a cache rather than the most significant bits?

(a) Indexing with the most significant bits would necessitate a smaller cache than is possible with
middle-bit indexing, resulting in generally worse cache performance.

(b) It is impossible to design a system that uses the most significant bits of an address as the set
index.

(¢) The process of determining whether a cache access will result in a hit or a miss is faster using
middle-bit indexing.

(d) A program with good spatial locality is likely to make more efficient use of the cache with
middle-bit indexing than with high-bit indexing.

Q4. When you print the address of a variable from C, what kind of address is that?
(a) Physical Address

(b) Virtual Address

(c) Depends on the context

(d) None of the above

Q5. For a floating point number, what would be an effect of allocating more bits to the exponent
part by taking them from the fraction part?

(a) You could represent fewer numbers, but they could be much larger.

(b) You could represent the same numbers, but with more decimal places.

(c) You could represent both larger and smaller numbers, but with less precision.

(d) Some previously representable numbers would now round to infinity

2. Integer Puzzles
True or false? If false, given an explanation as to why.

int x = foo();
inty = bar();
unsigned ux = X;
unsigned uy =vy;

ifx<0,thenx*x>0

ux > -1

Ifx>=0,then-x<=0

If x <=0, then-x>=0

X >>3 ==x/8

ifx &7 = 7, then (x << 30) < 0

3. Bit manipulation
Implement the following using only integer constants 0 to 255, asn unary and binary integer

operations (~ | & | * + - << >>), Assume two’s complement, 32 bit integers and arithmetic right
shifts.

a. //using | and ~ only
// returns the result of the and
int bitAnd (int x, int y) {

}

b. //return 1if x > 0, 0 otherwise
int isPositive (int x) {

}

c. //givennand mwhere 0 <=n, m<=3
Il swap the nth and mth bytes
int byteSwap (int x, int n, int m) {

}

4. Caches
Main memory is 256 KB (2'® bytes), byte-addressable

-

=> Virtual address is 14 bits long
- A page of memory is 32 B (2° bytes)
-> 8-way set associative TLB with 16 entries
- 4-way set associative cache with 8 lines and cache line of 4 bytes
TLB Page Table Cache

Index|Tag Valid|PPN| [VPN Valid PPN||VPN | Valid|PPN| |Index| Tag [Valid| Data [0:3]
@ (56| 1 |1185| | @@ | © |@18A| 141 | @ |07B7 @ (3987 1 |FD CC DF %@
@ [(9F| 1 |eoDE| | oF | @ |18Ee@| 143 | 1 |@E32 @ (3779 e |D4 D8 8F 1D
@ |[FF| @ |12¢5| | 23 | 1 |e3cp| 147 | 1 |1FBC @ [4B17| @ |53 27 4F C2
@ |(ee| o |e18A| [44 | @ |[1F77|15D| 1 |165B @ |008B| @ |EB @2 A4 57
@ [448| 1 |es90| | 5C | @ |@eABF|| 15F | @ |1687 1 (4617 1 |90 12 AA 67
© [8ea| 1 (1014| | 5F | 1 |155D|| 161 | @ (1889 1 (7541 1 |4C 63 B2 4B
@ (719 @ |@E32| | 68 | @ |@AAE|| 166 | @ |1BCA 1 |7EF2| 1 |8e D1 @B 79
@ |FDE| © |(1FBC| | 69 | © |@866| 191 | © |[17DF 1 |[2240] 1 |1C C3 66 4E
1 [F9| o |eeeD| | 75 | 1 |@99F| 1C3 | @ [1E8S
1 [(1E6| 1 |e3cp| | 88 | 1 |es9e| 1E4 | @ [188A
1 |AAE| 1 |155D| | A1 | @ |1E3D|| 1E5| @ |@69E
1 [acF| 1 |@e99F| | AC | 1 |118S(1E6| 1 |eEB3
1 [B2D| @ |165B| [C1 | @ |12Fe| 1E8 | 1 |1DS@
1 |(759| 1 |eeB3| | E8 | @ |1064| 1EB| 1 |1C97
1 |E4B| © [1C97| |104 | 1 (1014 1F3 | 1 |@E6D
1 |BB| © [1427| |13E| 1 |eDDE|| 1FE| 1 [12CS

Given the above information about the system memory system and states of the TLB, Page
Table and Cache. Answer the following questions:

Fill out the following for an access to virtual address: @x27CB

VPN:

PPO/VPO:

TLB Index:

TLB Tag:
TLB Hit?:
Page Fault?:

PPN:

Physical Address:
Offset (CO/BO):
Index:

Cache
Cache
Cache
Cache
Cache

Tag:

Hit?:
Data:

Fill out the following for an access to virtual address. ©x3E78
VPN:

PPO/VPO:

TLB Index:

TLB Tag:

TLB Hit?:

Page Fault?:

PPN:

Physical Address:
Cache Offset (CO/BO):
Cache Index:

Cache Tag:

Cache Hit?:

Cache Data:

5.
Can the following program deadlock? Why or why not?

Initially; a=1,b=1,c=1.

Thread 1: Thread 2:
P(a); P(c);
P(b); P(b);
V(b); V(b);
P(c); V(c);
V(c);

);

6. Assembly

When running the main function, what input would we need to provide in order to call

"phase_defused"?

00000000004004b0 <main=:

4004b0:
4004b4:
4004b9:
4004bb:
4004c0:
4004c5:
4004ca:
4004ce:
4004dz2:
4004d4:
4004d9:
4004dc:
4004de:
4004e0:
4004e3:
4004e7:
4004ec:

4004f0:

48 83 ec 18

bf 03 07 40 00
31 c0

48 8d 54 24 Oc
48 8d 74 24 08
e8 d6 ff ff ff

8b 74 24 Qc

8b 7¢c 24 08
31¢0

e84e 010000
838 1d

b0 00

7507

e8 52010000
eb 05

e8 27010000
48 83c4 18

c3

sub $0x18,%rsp

mov $0x400703,%edi

xor Y%eax, %eax

lea Oxc(%rsp),%rdx

lea Ox8(%rsp),%rsi

callg 4004a0 <__isoc99_scanf@plt=|
mov 0xc(%rsp),%esi

mov 0x8(%rsp),%edi

xor %oeax,%eax

callg 400627 <func2=

cmp $0x1d,%eax

mov $0x0,%al

jne 4004e/ <main+0x37=
callg 400637 <phase_defused>
jmp 4004ec <main+0x3c>
callg 400613 <explode_bomb=
add $0x18,%rsp

retq

00000000004005dd <func1=:

4005dd:
4005df:
4005e2:
4005e3:
4005e3:
4005e6:
4005e8:
4005ea:
4005ec:
4005ef:
4005f1:
4005f4.
4005f7:
4005fa:
4005ff:
400601
400603:
400609:
40080a:
40060f;

400610:
400612:

0000000000400627 <func2=:
400627:
400629:
40062c:
40062e:
400630:
400633:
400635:

41 54
41 89 fc
55
31ed
33
8913
85db
7417
83 fb 01
7418
8d 73 ff
44 89 e7
83 eb 02
e8 de ff ff ff
01c¢5
ebed

%r12

mov %edi,%r12d

push %rbp

xor %ebp,%ebp

push %rbx

mov %esi,%ebx

test %ebx,%ebx

je 400603 <func1+0x26>
cmp $0x1,%ebx

je 400609 <func1+0x2c>
lea -0x1(%rbx),%esi
mov %r12d,%edi
sub $0x2,%ebx

callg 4005dd <funci=

add %eax, %ehp

jmp 4005e8 <func1+0xb=

push

41bc 02000000 mov $0x2%r12d

5b

42 8d 44 2500
5d

41 5¢

c3

31-e0
83 ff 08
7e 02
ebe3
83 fe 02
Te 9
eb a6

pop %rbx

lea Ox0(%rbp,%r12,1),%eax
pop %rbp

pop %ri2

retq

xor %eax,%eax

cmp $0x8,%edi

jle 400630 <func2+0x9=>

jmp 400613 <explode_bomb=>
cmp $0x2,%esi

jle 40062e <func2+0x7=

jmp 4005dd <funci=

Helpful gdb, run in the beginning of the program:

(gdb) x/25¢ 0x400703
0x400703: 37'%' 100'd'32'' 37'%' 100'd'0"000' 0"000' O "0OO'
0x40070b: 0"000' 117001" 271033 37003 59 80'P' 0000
0x400713: 0"000' 9t 0000 07000 07000 84 'T -3"375'
0x40071b: -1377"

0 "o00
-1 377

7. Stack Overflow

a) Alright, you're a hacker now and you happen to have an inside source at a company that can
provide you with assembly for the company’s administrative code. The code is typically air tight
but your source tells you a rookie programmer, Alex, was just hired and that their code has
vulnerabilities and no OS protections (Alex is not the best at their job). Specifically, your source
provides you with this snippet of assembly that is in charge of taking in a user password attempt
as well as checking whether the user has an existing password or not (why these two tasks are
in one function is beyond me, but Alex is a rookie).

00000000086012b4 <get attempt and check null password>: #1st argument is user's pw :)
86012b4: 48 83 ec 38 sub $0x3c,%rsp
86012b8: 48 89 fd mov #rdi,%rbp
86012bb: 48 89 e7 mov arsp,ardi
86012be: eg 38 92 00 00 callg 5@le2b <Gets> #looks familiar
86012c3: 48 89 ef mov %rbp,%rdi
86012¢6: eg 38 ff ff ff callg 7@2ee3 <Null Pw Check> #Not important
86012cb: bg 91 @0 ee ee mov $0x1,%eax
86012d1: 48 83 c4 38 add $ex3c,%rsp
4017fb: c3 retq

Your inside source also informs you of the existence of the following function

0000000004b023e4 <Print_String Exit>: #Prints whatever string is passed in
#as 2nd arg and exits with value of
.t #lst arg

Lastly, your inside source informs you that rsp will be set to ff ff ff ff 57 4e 3b 52 when entering
the snippet in the first image (this is a really good inside source)

Assuming you acquired an individual’s username information, what string will allow you
to view their password(Encodings below for your reference and answer in the same form
as lab 3)?

b) Sadly, before this code was able to be deployed Alex’'s supervisor saw it and angrily told Alex
to fix it and explained to them that somebody could inject executable code onto the stack and
cause problems, as well as judging Alex for creating such an impractical function. Alex,
narrowing in on the term executable code (and not really listening to anything else that was
said) simply turned on an OS feature that made the stack non-executable. Luckily for you, your

inside source is a good one and has provided you with the following farm in order to

circumnavigate this issue.

P00BeRRRa5T76f3e2 <good function>:

a576f42@: b8 48 89 fc 9@
ab76t425: c3

0000000042013122 <bad_function>:

42013122: cb 48 89 d6 20 c@
42013128: c3

00000BRBCc462a204 <that function>:

cdb2a2dc: c7 @7 48 89 eb 98
cd62a212: c3

some instr
retq

some instr
retq

some instr
retq

P00RDRBRe2e2elel <some_function>:

elelelff: c7 89 87 48 89 ca
e2e2e385: c3

PO0B0OBRB52ealB@B <this function::

52eallb: 8d 87 48 89 f9 99
52eallc: c3

pooeaeeeefffffff <«f_function>:

lee0eefo: b8 48 89 fe 20 d9
16060016: c3

What string will still allow you to view the user’s password?

some instr
retqg

some instr
retg

some instr
retq

c¢) Alright at this point you are almost hit by a car and, having narrowly avoided death, decide
that being a hacker is not the right thing to do. You turn a new leaf and want to help Alex before
they are ultimately fired. What methods can you offer to Alex in order to prevent people
from abusing the code (although you are not allowed to tell Alex to get rid of the
impractical combination of getting input and checking password existence cause that

would hurt Alex’s feelings)?

(Might want to check attack lab specs for reminder on instructions for gadgets)

8. Code Optimization/Performance

Suppose we wish to write a function to evaluate a polynomial, where a polynomial of degree n is
defined to have a set of coefficients a0, a1, a2, . . . , an. For a value x, we evaluate the
polynomial by computing

n

a0+a1x+a2x2+---+anx

This evaluation can be implemented by the following function, having as arguments an array of

coefficients a, a value x, and the polynomial degree degree (the value n in Equation 5.2). In this
function, we compute both the successive terms of the equation and the successive powers of x
within a single loop:

1 double poly(double all, double x, long degree)
2 A

3 long ij;

4 double result = al0];

5 double xpwr = x; /# Equals x~i at start of loop */
6 for (1 = 1; i <= degree; i++) {

7 result += al[i] * xpwr;

8 XpWTr = X % XpWr;

9 b

10 return result;

11}

A. For degree n, how many additions and how many multiplications does this code perform?

B. On our reference machine, with arithmetic operations having the latencies shown in the figure
below, we measure the CPE for this function to be 5.00. Explain how this CPE arises based on
the data dependencies formed between iterations due to the operations implementing lines 7-8
of the function (code inside the for loop).

Integer Floating point
Operation Latency Issue Capacity Latency Issue Capacity
Addition 1 1 4 3 1 1
Multiplication 3 1 1 5 1 2

Division 3-30 3-30 1 3-15 3-15 1

Question 1. Linking (4 pts)

Suppose main.c and lib.c are compiled and linked separately. Determine if the following
combinations of source files would cause warnings or errors. If the code runs, what would get
printed? If an answer is undefined, simply write “undefined” in the result box.

main.c lib.c Result?
(“compile error”, “linker
error” or describe output)
int i; int i=2;

void func();

int main() {
printf("%d ",i);
func();
printf("%d",1i);

}

void func() {
i=3;

}

int i;
void func();
int main() {

static int i=2;
void func() {
i=3;

printf("%d ",i); }
func();
printf("%d",1i);

}

extern int i; int i=2;

void func();

int main() {
printf("%d ",i);
func();
printf("%d",i);

}

void func() {
i=3;

}

extern int i;

void func();

int main() {
printf("%d ",i);
func();
printf("%d",1i);

}

static int i=2;
void func() {
int i=3;

}

extern int i=1;

void func();

int main() {
printf("%d ",i);
func();
printf("%d",i);

}

static int i=2;
void func() {
int i=3;

}

