
Name: SOLUTIONS UID: CS 33

1. Always True?

Assume:

int x = rand();
int y = rand();
unsigned ux = (unsigned) x;

Are the following statements always true?

a. ux ≫ 3 == ux/8

True

• For unsigned integers, right shifting always rounds towards 0.

• Shifting right by 3 is the same as integer division by 23, which also rounds towards 0.

b. Given x > 0,
((x ≪ 5) ≫ 6) > 0

False

• In the case where (x ≪ 5) has a 1 for its most significant bit, right shifting by 6 will
produce a negative number.

c. ∼ x+ x ≥ ux

True

• ∼ x+ x would be UMAX.

d. Given x & 15 == 11, x & 0b0000 . . . 1111 == 0b0000 . . . 1011,
then (∼ ((x ≫ 3) & (x ≫ 2)) ≪ 31) ≥ 0

False

• The final comparison against 0 effectively checks if the most significant bit of the
left-hand sign is 0 or not.

• By the given statement, we know that the 4 least significant bits (lsb) of x are 1011.
Thus, (x ≫ 3) has a lsb of 1, while (x ≫ 2) has a lsb of 0.

• AND-ing the two together has a lsb of 0, which when negated is 1.

• Left-shifting by 31 thus results in a number with a most significant bit of 1, and the
remaining bits being 0.

• This is a negative number.

1



e. Given ((x < 0) && (x+ x < 0)),
then x+ ux < 0

False

• In an addition of an unsigned integer with a signed integer, the signed integer is
implicitly cast to unsigned.

• Thus, the addition of two unsigned integers will always be non-negative (regardless of
what is given).

f. Given ((x < 0) && (y < 0) && (x+ y > 0)),
then ((x | y) ≫ 30) == −1

False

• Per the given, we know that the two most significant bits of x and y can be either 10
and 10, 11 and 10, or 10 and 11.

• In the case where x and y are 10 and 10, (x | y) would have most significant bits of 10.

• In that case, right shifting (x | y) by 30 would result in -2.

2. Data Lab Practice

Write a function that, given a number n, returns another number where the kth bit from
the right is set to 0.

Examples:

• killKthBit(37, 3) = 33 because 3710 = 1001012 → 1000012 = 3310

• killKthBit(37, 4) = 37 because the 4th bit from the right is already 0.

Allowed Operations: ∼ & | ˆ ≫ ≪ − +

int killKthBit(int n, int k) {
return n & ˜(1 << (k - 1))

}

3. What’s the Byte?

Given: x has a 4 byte value of 255, i.e.

0x000000FF

What is the value of the byte with the lowest address in:

2



a. big endian system?

0x00

b. little endian system?

0xFF

4. Endianness

a. Suppose we declared the following 4 byte int:
int x = 254;

and we stored it at memory location 0x100 on a little-endian system. What values
would be stored in the following memory locations?

0x100 0x101 0x102 0x103

0xFE 0x00 0x00 0x00

b. Suppose we declared an array of ints:
int arr[] = 1, 2;

and we stored it at memory location 0x100 on a little-endian system. What values
would be stored in the following memory locations?

0x100 0x101 0x102 0x103 0x104 0x105 0x106 0x107

0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00

c. Suppose we declared a string:
char* s = ”hello”;

and we stored it at memory location 0x100 on a little-endian system. What values
would be stored in the following memory locations?

Note: It’s a good idea to get familiar with hex encodings of alphabetical characters,
but for convenience, the hexadecimal encodings are: h (0x68), e (0x65), l (0x6c), o
(0x6f)

0x100 0x101 0x102 0x103 0x104 0x105

0x68 0x65 0x6C 0x6C 0x6F 0x00

3


