

1.
Assume:
int x = rand();
int y = rand();
unsigned ux = (unsigned) x;

Are the following statements always true?

a.
ux >> 3 == ux/8
True

● For unsigned integers, right shifting always rounds towards 0, as
all unsigned integers are non-negative and extra 1’s on the right
are discarded while right shifting.

● Thus, shifting to the right by 3 is equivalent to integer
division by 2^3, which also rounds towards 0.

b.
given x > 0,
((x << 5) >> 6) > 0
False

● In the case where (x << 5) has a 1 for its most significant bit,
right shifting by 6 will produce a negative number.

c.
~x + x >= ux
True

● ~x + x would be UMAX.

d.
given x & 15 == 11,
(~((x >> 3) & (x >> 2)) << 31) >= 0
False

● The final comparison against 0 effectively checks if the most
significant bit of the left hand sign is 0 or not.

● By the given statement, we know that the 4 least significant bits
(lsb) of x are 1011. Thus (x >> 3) has a lsb of 1, while (x >> 2)
has a lsb of 0.

● AND-ing the two together has a lsb of 0, which when negated is 1.
● Left-shifting by 31 thus results in a number with a most

significant bit of 1, and the remaining bits being 0
● This is a negative number

e.

given ((x < 0) && (x + x < 0))
x + ux < 0
False

● In an addition of an unsigned integer with a signed integer, the
signed integer is implicitly cast to unsigned.

● Thus, the addition of two unsigned integers will always be non-
negative

○ This is regardless of the given

f.
given ((x < 0) && (y < 0) && (x + y > 0))
((x | y) >> 30) == -1
False

● Per the given, we know that the two most significant bits of x
and y can be either 10 and 10, 11 and 10, or 10 and 11.

● In the case where x and y are 10 and 10, (x | y) would have most
significant bits of 10

● In that case, Right shifting (x | y) by 30 would the result in -2

2. Write a function that, given a number n, returns another number where the kth bit from the
right is set to to 0.
Examples:
killKthBit(37, 3) = 33 because 3710 = 1001012 ~> 1000012 = 3310
killKthBit(37, 4) = 37 because the 4th bit is already 0.

int killKthBit(int n, int k) {

 return n & ~(1 << (k - 1));

}

3.
Given: x has a 4 byte value of 255
What is the value of the byte with the lowest address in a
255 is represented as 0x000000FF
a.
big endian system?
0x00
b.
little endian system?
0xFF

