```
Name:
UID:
```

1.

Assume:
int $x=r a n d() ; ~ i n t ~ y=r a n d() ;$
unsigned ux $=$ (unsigned) x;

Are the following statements always true?
a.
ux $\gg 3$ = ux/8
b. given $x>0$
$((x \ll 5) \gg 6)>0$
c. $\sim x+x>=u x$
d. given $x \& 15==11, x \& 0000 \ldots 1111==0000 \ldots 1011$ $(\sim((x \gg 3) \&(x \gg 2)) \ll 31)>=0$
e.given $((x<0) \& \&(x+x<0))$
$x+u x<0$
f.given $((x<0) \& \&(y<0) \& \&(x+y>0))$
$((x \mid y) \gg 30)==-1$

2. Data Lab Practice

Write a function that, given a number n, returns another number where the $k^{\text {th }}$ bit from the right is set to to 0 .

Examples:
killKthBit $(37,3)=33$ because $37_{10}=100101_{2} \sim>100001_{2}=33_{10}$
killKthBit $(37,4)=37$ because the $4^{\text {th }}$ bit from the right is already 0 .
int killKthBit(int n, int k) \{
\}
3.

Given: x has a 4 byte value of 255
0x000000FF
What is the value of the byte with the lowest address in a
a. big endian system?
b. little endian system?
4.

Endianness

a. Suppose we declared the following 4 byte int:
int $\mathrm{x}=254$;
and we stored this in memory location 0×100 on a little-endian system. What values would be stored in the following memory locations?

0×100	0×101	0×102	0×103

b. Suppose we declared an array of ints:
int arr[] = \{1, 2\};
and we stored this in memory location 0×100 on a little endian system. What values would be stored in the following memory locations?

0×100	0×101	0×102	0×103	0×104	0×105	0×106	0×107

c. Suppose we declared a string:
char * s = "hello";
and we stored this in memory location 0×100 on a little endian system. What values would be stored in the following memory locations?
note: it's a good idea to get familiar with hex encodings of alphabetical characters, but for convenience, the hexadecimal encodings of the characters are: $\mathrm{h}(0 \times 68), \mathrm{e}(0 \times 65)$, I
($0 \times 6 \mathrm{c}$), and o (0x6f)

0×100	0×101	0×102	0×103	0×104	0×105

