
1. For the following assembly, draw a data flow graph and identify the critical path.
.L1:
 vmulsd (%rdx), %xmm0, %xmm0
 addq $8, %rdx
 cmpq %rax, %rdx
 jne .L1

Given the following table, what is the lowest bound latency to execute n iterations of this
loop for integer operations? Floating point operations?

Latency Table (CPE) Integer Double

Arithmetic (except mul) 1 3

Multiply 2 4

Load Store 1 1

The critical path is determined by the multiply operation in the loop. For integer
operations, from the table, we can see that the latency is 2 cycles for multiplication and
for n iterations of the loop, it would take 2n cycles to execute. Similarly for floating point
operations, the latency is 4 cycles, and it would take 4n cycles to execute n iterations of
the loop.

1. Suppose our memory can store 64 bytes of data, addressed between 6'b000000 and
6'b111111, and that we have stored a 4 x 4 array of ints in memory. This could be
declared by:

int arr[4][4] = {

{0,1,2,3},
{4,5,6,7},
{8,9,10,11},
{12,13,14,15}

};

In addition, suppose we have a fully associative cache (only one set) with a single line
of 16 bytes.

Then, our addresses can be partitioned into 2 tag bits along with 4 block offset bits.
For example, 6'b000000 would be formatted as:

tag: 00 block offset: 0000

A. Now, say we accessed the array using the following loop, and our cache is cold

(empty) to start. How many cache hits/misses would there be? (Think about how
the array is stored in memory, and how data will be cached).

let sum = 0;
for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 sum += arr[i][j];
 }
}

B. Again, assume our cache is empty to start. How many cache hits/misses would
there be if we used this loop instead?

let sum = 0;
for (int j = 0; j < 4; j++) {
 for (int i = 0; i < 4; i++) {
 sum += arr[i][j];
 }
}

2. Suppose we have a direct-mapped cache with 2 sets, 1 line per set, 4 bytes per line,
and 4 bit addresses that look like:

tag bits: t = 1 set index: s = 1 offset bits: b = 2

Then our address space will look like:

Address
(decimal)

Tag
bits

Index
bits

Offset bits

0 0 0 00
1 0 0 01
2 0 0 10
3 0 0 11
4 0 1 00
5 0 1 01
6 0 1 10
7 0 1 11
8 1 0 00
9 1 0 01
10 1 0 10
11 1 0 11
12 1 1 00
13 1 1 01
14 1 1 10
15 1 1 11

Initially, our cache is cold (empty), and we may represent it like this:

Set Valid Tag Byte 0 Byte 1 Byte 2 Byte 3

0 0

1 0

A. Now, suppose we want to read 1-byte words from memory, where the word
located at memory address i is indicated by M[i]. What happens to the cache
when the CPU performs the following sequence of reads?

read words at memory address: 0, 14, 3, 11

