1. For the following assembly, draw a data flow graph and identify the critical path.

L1:
vmulsd (%rdx), %xmm0, Y%xmmO
addq $8, %rdx
cmpq %rax, %rdx
jne L1

Given the following table, what is the lowest bound latency to execute n iterations of this
loop for integer operations? Floating point operations?

Latency Table (CPE) Integer Double
Arithmetic (except mul) 1 3
Multiply 2 4
Load Store 1 1

Y

YxmmO | Yrdx

The critical path is determined by the multiply operation in the loop. For integer
operations, from the table, we can see that the latency is 2 cycles for multiplication and
for n iterations of the loop, it would take 2n cycles to execute. Similarly for floating point
operations, the latency is 4 cycles, and it would take 4n cycles to execute n iterations of
the loop.

1.

Suppose our memory can store 64 bytes of data, addressed between 6'b000000 and
6'b111111, and that we have stored a 4 x 4 array of ints in memory. This could be
declared by:

int arr[4][4] = {
{0,1,2,3},
{4,5,6,7},
{8,9,10,11},
(12,13,14,15}
}i

In addition, suppose we have a fully associative cache (only one set) with a single line
of 16 bytes.

Then, our addresses can be partitioned into 2 tag bits along with 4 block offset bits.
For example, 6'b000000 would be formatted as:

tag: 00 block offset: 0000

A. Now, say we accessed the array using the following loop, and our cache is cold
(empty) to start. How many cache hits/misses would there be? (Think about how
the array is stored in memory, and how data will be cached).

let sum = 0;
for (int 1 = 0; 1 < 4; i++) {
for (int 7 = 0; 3 < 4; j++) {
sum += arr[i][]];

B. Again, assume our cache is empty to start. How many cache hits/misses would
there be if we used this loop instead?

let sum = 0;

for (int 7 = 0; J < 4; j++) {

for (int 1 = 0; 1 < 4; i++) {
sum += arr[i] [J];

we can iMmagine our array is stored in

memory like +his: rog oidset
J Stack T3 T
HieH I3 111100
OV [R]3 q 111000
ol 13 110100
4 rows 12 { 10000
3190 \ L o1100
mi 10 101000
Q1B s q 100100
8 100000
H wlumns 3 o1l 100
o 01 1000
Reca\l that on int Y 010100
is u h Yh 4 010000
\ bytes, hance the % il b
binory addresses 2 001000
indyeated i 000100
LOW Q 000000

our cache looks like +his:

sSet valid a9 |block of b butes
0 0

now consider the loops :
A) accesses in row mMa)or order..
= first read at+ arc (0)(0) (MISS)
Stores the first row in the
cache, so reads arcColC1) +hrough
arr [0)(3) are cache hits!
— so there 1S 1 miss and 3
hits for every 4 acesses
for a total of 4 misses, R hits
B) acesses In olumn mojor order
S fiesy read ot are (o)(o) (MIsS)
caches arr COY(o) throuwgh arr (8)(3)
- however, our next read is at arr1)(0)!
50 we have another miss, and
evict the £irst row to cache arr [1)
= ... repeat A
= o tache misses, O hifs

2. Suppose we have a direct-mapped cache with 2 sets, 1 line per set, 4 bytes per line,
and 4 bit addresses that look like:

tag bits: t = 1 setindex: s =1 offset bits: b = 2

Then our address space will look like:

IAddress Tag Index Offset bits

(decimal) |bits bits
0 0 0 00
1 0 0 01
2 0 0 10
3 0 0 11
4 0 1 00
5 0 1 01
6 0 1 10
7 0 1 11
8 1 0 00
9 1 0 01
10 1 0 10
11 1 0 11
12 1 1 00
13 1 1 01
14 1 1 10
15 1 1 11

Initially, our cache is cold (empty), and we may represent it like this:

Set Valid Tag Byte 0 Byte 1 Byte 2 Byte 3
0 0
1 0

A. Now, suppose we want to read 1-byte words from memory, where the word
located at memory address i is indicated by M[i]. What happens to the cache
when the CPU performs the following sequence of reads?

read words at memory address: 0, 14, 3, 11

& Good things Yo note :

- first, we note that our blocks (data that gets cached fogether) are uniquely identified by
the (oncatenation of the tag and index bits

— Dblocks 2'b00, 2'b0), 'b10,A bl
a0 d\ d3 d3
= furthermore, we have Two cache sets (each capable of fitting ome block) and H blocks
which means that multiple blocks must map o the same cache set (same et index)
G these blocks are differentiated by their +ag bits

initially, our cache is cold:

SET |VALID | TAG B0 21 B B3
0 o}
| 0

read word o+ address Q:
se+

\ Set O's line has a O valid bit, so cache mjss'
d0=4b0000O

”, A se ?Cew\ch bloclk © from memory and store
in Set Q

SET |VALD | TAG BO 21 B2 B3

0

\ Q

read word at address |4 :
Se+

PIRIL It Set 1sline has a O walid bit, so cache mjss'
Totesey Teton block 3 trom memory and store
¥ag in Set |
SET |VALID | TAG BO 21 B2 B3
o \ O [m(o) [m(N | m(2) |m[3)
\

read uword at address %

et set O's line has a valid bit of 1, and the tags
a3 =4 bOOL\%‘ match, so we have & cache mt! the cache's state
A does not change

read word ot address ||:
set
dlif=4d'bl 0 1)

.—L—éﬁisﬁ

set 0's ling has & valid bit of 1, bu¥ the +tags do not
motch, S0 we have @& Ccoche wiss ! we must evict

tag the data %rom set O and cache block & from memovy

SET |VALID | TAG B0 31 Ba B3

| \ \ m() [m(3) [mlw) | mis)

