
CS33: Intro Computer Organization

Midterm, Form: A

Name:

ID:

Please wait until everyone has their exam to begin. We will let you know
when to start. Good luck!

Problem Score Points Possible

1 18
2 8
3 12
4 20
5 15
6 0
7 17
8 10

1

Question 1. The bigger the better. (18, 3 pts each)

1. Which integer type in C is large enough to store a pointer without loss of precision?

2. In C, what’s the smallest unsigned int minus one?

3. Which can represent the largest number in C, the largest float or the largest signed long or largest
unisgned int?

4. Consider an n-bit signed number, what’s the largest one?

5. In C, what’s the largest int plus one?

6. What is the largest number that can be represented by a 7 bit floating point number (say with the
same rules as IEEE 754 floating point), with a 1 bit sign, 3 bit exponent, and 3 bit significand
(bias=3)?

2

Question 2. Matchmaker (8 Pts, 1 pts each)

Pretend to be a compiler.
You are free to assign registers to variables however you choose. Assume x and y are of type int.

Remember, the compiler(me) may have done some optimizations.

x=x*y

x=(x < 0) ? -1 : 0

x=x*3+5

x=1

y=x+y

x=x*5+3

x=0

x=x*32

(a) movl $1 %eax

(b) imul %edi %edx

(c) shr $ 31 %edi

(d) leaq 3(%edi,%edi,4)

(e) xorl %edi %edi

(f) leaq 5(%edi,%edi,2)

(g) shl $ 5 %edi

(h) addl %esi %edi

Question 3. Unholy Union (9 pts)

#include <s t d i o . h>
#include <s t r i n g . h>

void main (char∗∗ argv , int argc) {
union U {

char s [1 6] ;
int i ;
char c ;

} u ;

s t r cpy (u . s , ” e v i l p ro f ”) ; //Copy s t r i n g to d e s t i n a t i on from source

p r i n t f (”%x\n” , u . c) ;
p r i n t f (”%x\n” , u . i) ;

}

1. What does this program print? (6 pts)

2. To which addresses may this union be aligned? (3pts)

3

Question 4. Deconstructed (20 pts, 5 Each)

#include <s t d i o . h>

typedef struct {
char a ;
int b ;
char c ;
double d ;

} X;

void main (char∗∗ argv , int argc) {
X x [1 0] ;
p r i n t f (”%d\n” , (int) s izeof (X)) ;
p r i n t f (”%d\n” , (int) s izeof (x)) ;

}

1. What does this program print?

2. Draw the memory layout of X, where your diagram indicates which byte offset each variable is located
at, as well as any space allocated just for padding:

3. Write an assembly snippet that performs x[10].c=0. Assume that x is in register $rdi.

4. Describe how you would reduce the memory consumption of x. How small can you make x?

4

Question 5. I can puzzle, (15 Pts, 2 pts each)

Answer these true false puzzles. Assume the following setup:

int x = foo () ;
int y = bar () ;
unsigned ux = x ;
unsigned uy = y ;

-x == ∼x+1

x >> 2 == x / 4

x > 0 && y > 0 =⇒ x + y > 0

5*ux > ux

x < 100 =⇒ 10*ux > ux

Question 6. ... and so can you! (Up to 4 pts Extra Credit)

1. Write a C Puzzle of the form above, give the solution, and explain why you think its cool.

5

Question 7. Your fibs are stacking up (16 Pts)

Recall the fibbonacci code that we discussed in class, and its associated disassembly: (the instruction
addresses are omitted for simplicity, just the offsets remain)

int f i b (int a) {
i f (a < 2) {

return 1 ;
}
return f i b (a−1) + f i b (a−2);

}

f i b : 0x40055d <+0>: push %rbp
0 x40055e <+1>: push %rbx
0 x40055f <+2>: sub $0x8 ,% rsp
0x400563 <+6>: mov %edi , %ebx
0x400565 <+8>: cmp $0x1 , %ed i
0x400568 <+11>: j l e 0x400580 < f i b +35>
0x40056a <+13>: l e a −0x1(%r d i) , %ed i
0x40056d <+16>: c a l l q 0x40055d <f i b>
0x400572 <+21>: mov %eax , %ebp
0x400574 <+23>: l e a −0x2(%rbx) , %ed i
0x400577 <+26>: c a l l q 0x40055d <f i b>
0 x40057c <+31>: add %ebp , %eax
0 x40057e <+33>: jmp 0x400585 < f i b +40>
0x400580 <+35>: mov $0x1 , %eax
0x400585 <+40>: add $0x8 , %rsp
0x400589 <+44>: pop %rbx
0x40058a <+45>: pop %rbp
0x40058b <+46>: r e tq

1. This function calls itself recursively. Imagine in gdb we put a breakpoint on line 0x40057c, then call
fib(3). Draw everything you know about the stack! If you know what the value is, write the value,
otherwise indicate what it is. (10 pts)

2. On which line(s) (specify as offset from fib please!!) is/are the stack being allocated? (1pt)

3. On which line(s) is/are the stack being de-allocated? (1pt)

4. On which line(s) is/are callee saved registers being saved? (1pt)

5. On which line(s) is/are callee saved registers being restored? (1pt)

6. On which line(s) is/are the input argument to fib being set? (1pt)

7. On which line(s) is/are the return value from fib being set (for the final time)? (1pt)

6

Question 8. Oh Fuuuudge (10 pts)

You just finished your CS32 homework when all of a sudden you “rm -f my homework.c”. Thankfully,
you didn’t delete your binary file – phew. You forgot all the expressions in your source code, but you kind
of remembered the overall structure. It’s time to analyze the binary to fill out the remaining expressions.

<+0>: mov $0x1 , %r9d
<+6>: jmp <func+54>
<+8>: movslq %r9d , %rax
<+11>: mov (%rdi , %rax , 4) , %r8d
<+15>: l e a −0x1(%r9) , %eax
<+19>: jmp <func+28>
<+21>: mov %edx , 0x4(%rdi , %rcx , 4)
<+25>: sub $0x1 , %eax
<+28>: t e s t %eax , %eax
<+30>: j s <func+43>
<+32>: movslq %eax , %rcx
<+35>: mov (%rdi , %rcx , 4) , %edx
<+38>: cmp %r8d , %edx
<+41>: j g <func+21>
<+43>: c l t q
<+45>: mov %r8d , 0x4(%rdi , %rax , 4)
<+50>: add $0x1 , %r9d
<+54>: cmp %es i , %r9d
<+57>: j l <func+8>
<+59>: repz re tq

1. Fill in the code (2 Pts each .. Extra Credit Possible)

void func (int ar r [] , int n)
{

int i , key , j ;
for (i = ; i ; i++)
{

key = arr [] ;
j = i −1;

while (>=0 && >)
{

ar r [] = ar r [] ;
j = ;

}
ar r [] = key ;

}
}

2. What well-known algorithm is this? (2 Pts Extra Credit)

7

1.

8

Answer Key for Exam A

1

Question 1. The bigger the better. (18, 3 pts each)

1. Which integer type in C is large enough to store a pointer without loss of precision?uint64 t, long,...

2. In C, what’s the smallest unsigned int minus one? 232 − 1

3. Which can represent the largest number in C, the largest float or the largest signed long or largest
unisgned int? lagest float

4. Consider an n-bit signed number, what’s the largest one? 2(n−1) − 1

5. In C, what’s the largest int plus one? −231

6. What is the largest number that can be represented by a 7 bit floating point number (say with the
same rules as IEEE 754 floating point), with a 1 bit sign, 3 bit exponent, and 3 bit significand
(bias=3)?1.875 ∗ 23 = 15

2

Question 2. Matchmaker (8 Pts, 1 pts each)

Pretend to be a compiler.
You are free to assign registers to variables however you choose. Assume x and y are of type int.

Remember, the compiler(me) may have done some optimizations.

(b) x=x*y

(c) x=(x < 0) ? -1 : 0

(f) x=x*3+5

(a) x=1

(h) y=x+y

(d) x=x*5+3

(e) x=0

(g) x=x*32

(a) movl $1 %eax

(b) imul %edi %edx

(c) shr $ 31 %edi

(d) leaq 3(%edi,%edi,4)

(e) xorl %edi %edi

(f) leaq 5(%edi,%edi,2)

(g) shl $ 5 %edi

(h) addl %esi %edi

Question 3. Unholy Union (9 pts)

#include <s t d i o . h>
#include <s t r i n g . h>

void main (char∗∗ argv , int argc) {
union U {

char s [1 6] ;
int i ;
char c ;

} u ;

s t r cpy (u . s , ” e v i l p ro f ”) ; //Copy s t r i n g to d e s t i n a t i on from source

p r i n t f (”%x\n” , u . c) ;
p r i n t f (”%x\n” , u . i) ;

}

1. What does this program print? (6 pts)

2. To which addresses may this union be aligned? (3pts)

3

Question 4. Deconstructed (20 pts, 5 Each)

#include <s t d i o . h>

typedef struct {
char a ;
int b ;
char c ;
double d ;

} X;

void main (char∗∗ argv , int argc) {
X x [1 0] ;
p r i n t f (”%d\n” , (int) s izeof (X)) ;
p r i n t f (”%d\n” , (int) s izeof (x)) ;

}

1. What does this program print?

2. Draw the memory layout of X, where your diagram indicates which byte offset each variable is located
at, as well as any space allocated just for padding:

3. Write an assembly snippet that performs x[10].c=0. Assume that x is in register $rdi.

4. Describe how you would reduce the memory consumption of x. How small can you make x?

4

Question 5. I can puzzle, (15 Pts, 2 pts each)

Answer these true false puzzles. Assume the following setup:

int x = foo () ;
int y = bar () ;
unsigned ux = x ;
unsigned uy = y ;

True -x == ∼x+1

False x >> 2 == x / 4

False x > 0 && y > 0 =⇒ x + y > 0

False 5*ux > ux

False x < 100 =⇒ 10*ux > ux

Question 6. ... and so can you! (Up to 4 pts Extra Credit)

1. Write a C Puzzle of the form above, give the solution, and explain why you think its cool.

5

Question 7. Your fibs are stacking up (16 Pts)

Recall the fibbonacci code that we discussed in class, and its associated disassembly: (the instruction
addresses are omitted for simplicity, just the offsets remain)

int f i b (int a) {
i f (a < 2) {

return 1 ;
}
return f i b (a−1) + f i b (a−2);

}

f i b : 0x40055d <+0>: push %rbp
0 x40055e <+1>: push %rbx
0 x40055f <+2>: sub $0x8 ,% rsp
0x400563 <+6>: mov %edi , %ebx
0x400565 <+8>: cmp $0x1 , %ed i
0x400568 <+11>: j l e 0x400580 < f i b +35>
0x40056a <+13>: l e a −0x1(%r d i) , %ed i
0x40056d <+16>: c a l l q 0x40055d <f i b>
0x400572 <+21>: mov %eax , %ebp
0x400574 <+23>: l e a −0x2(%rbx) , %ed i
0x400577 <+26>: c a l l q 0x40055d <f i b>
0 x40057c <+31>: add %ebp , %eax
0 x40057e <+33>: jmp 0x400585 < f i b +40>
0x400580 <+35>: mov $0x1 , %eax
0x400585 <+40>: add $0x8 , %rsp
0x400589 <+44>: pop %rbx
0x40058a <+45>: pop %rbp
0x40058b <+46>: r e tq

1. This function calls itself recursively. Imagine in gdb we put a breakpoint on line 0x40057c, then call
fib(3). Draw everything you know about the stack! If you know what the value is, write the value,
otherwise indicate what it is. (10 pts)

2. On which line(s) (specify as offset from fib please!!) is/are the stack being allocated? (1pt)

3. On which line(s) is/are the stack being de-allocated? (1pt)

4. On which line(s) is/are callee saved registers being saved? (1pt)

5. On which line(s) is/are callee saved registers being restored? (1pt)

6. On which line(s) is/are the input argument to fib being set? (1pt)

7. On which line(s) is/are the return value from fib being set (for the final time)? (1pt)

6

Question 8. Oh Fuuuudge (10 pts)

You just finished your CS32 homework when all of a sudden you “rm -f my homework.c”. Thankfully,
you didn’t delete your binary file – phew. You forgot all the expressions in your source code, but you kind
of remembered the overall structure. It’s time to analyze the binary to fill out the remaining expressions.

<+0>: mov $0x1 , %r9d
<+6>: jmp <func+54>
<+8>: movslq %r9d , %rax
<+11>: mov (%rdi , %rax , 4) , %r8d
<+15>: l e a −0x1(%r9) , %eax
<+19>: jmp <func+28>
<+21>: mov %edx , 0x4(%rdi , %rcx , 4)
<+25>: sub $0x1 , %eax
<+28>: t e s t %eax , %eax
<+30>: j s <func+43>
<+32>: movslq %eax , %rcx
<+35>: mov (%rdi , %rcx , 4) , %edx
<+38>: cmp %r8d , %edx
<+41>: j g <func+21>
<+43>: c l t q
<+45>: mov %r8d , 0x4(%rdi , %rax , 4)
<+50>: add $0x1 , %r9d
<+54>: cmp %es i , %r9d
<+57>: j l <func+8>
<+59>: repz re tq

1. Fill in the code (2 Pts each .. Extra Credit Possible)

void func (int ar r [] , int n)
{

int i , key , j ;
for (i = ; i ; i++)
{

key = arr [] ;
j = i −1;

while (>=0 && >)
{

ar r [] = ar r [] ;
j = ;

}
ar r [] = key ;

}
}

2. What well-known algorithm is this? (2 Pts Extra Credit)

7

1.

8

