
CS33: Intro Computer Organization

Final, Form: A

Name:

ID:

Please wait until everyone has their exam to begin. We will let you know
when to start. Good luck!

Problem Score Points Possible

1 26
2 9
3 6
4 16
5 15
6 12
7 15
8 16

Total 100 (115)

1

Question 1. Multiple Choice (26 points)

For each question, mark any that apply. Only answers that mark all correct choices will be considered
correct.

1. What are some benefits of virtual memory?

(a) It allows the address space to be larger than the physical address space.

(b) It isolates address spaces of different processes.

(c) It enables faster memory accesses.

(d) It increases the amount of instruction level parallelism.

2. When you print the address of a variable from C, what kind of address is that?

(a) Physical Address

(b) Virtual Address

(c) Depends on the context

(d) None of the above

3. What’s the purpose of the linker?

(a) Optimize the code’s performance.

(b) Support the abstraction of virtual memory.

(c) Enable separate compilation.

(d) Simplify the contract between hardware and software.

4. Why could loop unrolling sometimes be harmful to performance?

(a) It introduces extra dynamic instructions, potentially adding to the critical path length.

(b) It introduces extra static instructions, putting more strain on the instruction cache.

(c) It results in unnecessary strength reduction, causing more expensive operations to be executed.

(d) Trick question, it is never harmful for performance.

5. What is the standard order of steps in a compilation flow?

(a) Compile, Preprocess, Link

(b) Compile, Link, Preprocess

(c) Preprocess, Link, Compile

(d) Preprocess, Compile, Link

6. What of the following are reason(s) why multi-threaded code might go slower than expected?

(a) More contention for data in the cache.

(b) Overhead of synchronizing shared variables.

(c) Overhead of starting/stopping threads.

(d) Space overhead from .bss/.data sections.

7. Each thread in a multithreaded program has its own:

(a) Heap

(b) Stack

(c) Global values

(d) Text Section

(e) Register Values

2

8. What is the purpose of a multi-level page table, over a single level?

(a) Faster access to physical memory.

(b) It occupies less space.

(c) Enables memory protection.

(d) Helps to make context-switching faster.

9. Which of the following could be contained in an ELF file?

(a) Machine Code

(b) Stack

(c) Global Variables

(d) Symbol Table

(e) Heap

10. Given the simple implicit-free-list approach that we discussed in class for implementing malloc, which
of the following scenarios would cause the most external fragmentation?

(a) Repeatedly calling malloc() on many different sizes.

(b) Repeatedly calling malloc() on many different sizes, while sometimes freeing some memory.

(c) Repeatedly calling malloc() with the same size.

(d) Repeatedly calling malloc() with the same size, while somtimes freeing some memory.

11. For a floating point number, what would be an effect of allocating more bits to the exponent part by
taking them from the fraction part?

(a) You could represent fewer numbers, but they could be much larger.

(b) You could represent the same numbers, but with more decimal places.

(c) You could represent both larger and smaller numbers, but with less precision.

(d) Some previously representable numbers would now round to infinity

12. Assuming no errors, which one of the following functions returns exactly once?

(a) fork()

(b) execve()

(c) exit()

(d) wait()

13. What distinguishes a trap from a fault?

(a) A trap is an exception, while a fault is not

(b) A trap is intentional, while a fault is not

(c) A trap is recoverable, while a fault is not

(d) A trap is synchronous, while a fault is not

3

Question 2. And just who is responsible for this? (9pts)

For each blank, write in which entity is primarily responsible for each of the following items. The options
are: Compiler, Linker, Loader, Operating System Kernel, or Hardware.

1. Code Relocation

2. Symbol Resolution

3. Code Optimization

4. Initiating a context switch

5. Enabling Virtual Memory abstraction ,

6. Simultaneous Multithreading

7. Allocating memory for uninitialized global variables.

8. Allocating and storing data in cache memories (eg. L1, L2, etc).

Question 3. Easy Linking (6 pts)

Suppose we compile main.c and foo.c separately, then link them together.
main.c

#include <stdio.h>
int a = 1;
static int b = 2;
int c = 3;
int main() {
int c = 4;
foo();
printf("a=%d,b=%d,c=%d\n", a, b, c);
return 0;

}

foo.c

int a, b, c;
void foo() {

a = 5;
b = 6;
c = 7;

}

1. What is printed? a= ,b= ,c=

4

Question 4. Hard Linking (16 pts)

Suppose we compile main.c and func.c separately, then link them together.
main.c

#include <stdio.h>
#include <stdlib.h>

long long int x=0;
int y;
int* pointer;

int func(int* p);

int main(int argc, char**argv) {
int my_array[5];

pointer=(int*)malloc(100);
y=1;

func(&pointer[0]);
func(&y);
printf("%d,%d\n",y,pointer[0]);

}

func.c

#include <stdio.h>

double x;
int y=10;

int func(int* p) {
static int s=0;
s+=1;
y+=1;

*p=y+s;

x+=0.25;
printf("x=%f,s=%d\n",x,s);

}

1. What linker errors or warnings (if any) are there for this code?

2. If there are linker errors, how could you fix them? If there are no linker errors, what is printed when
we run this program?

3. For each of the following, describe where that variable is, both in terms of where it is in the ELF
file after linking (.text,.data,.bss,.debug,.data, etc), and where it is dynamically in the virtual memory
space as it is executing(stack,heap,text,etc). If the associated memory does not exist in one of those
places (eg. if the ELF does not explicitly contain space allocated for the data associated with that
variable) mark with a dash “–”. Also, assume the compiler does not optimize-out unused variables
during compilation.

ELF: In VM:
x

func

my array

my array[0]

pointer

pointer[0]

5

Question 5. This problem makes my neurons hurt... (15 pts)

Your task is to analyze the performance of a neural network computation, which is a slightly modified
matrix-vector multiplication. Basically, this code multiplies a vectcor (called neuron in) by a matrix (called
synapse), and the output will be a vector (called neuron out). Also, the sigmoid operation is applied
to each output element (the sigmoid function is not shown below).

Nevermind what the program is doing, we can optimize it without understanding it at all! Below is the
original code, and 4 different “optimized” versions of main.

ORIGINAL CODE:

uint16_t synapse [Nout][Nin], neuron_in[Nin], neuron_out[Nout];

void apply_sigmoid(uint16_t* elem) {

*elem = sigmoid(*elem);
}
void multiply_elem(uint16_t* output, uint16_t synapse, uint16_t neuron_in) {

*output += synapse * neuron_in;
}

void main() {
for(int i = 0; i < Nin; i++) {
for(int j = 0; j < Nout; j++) {
multiply_elem(&neuron_out[j],synapse[j][i],neuron_in[i]);

}
}
for(j = 0; j < Nout; j++) {

apply_sigmoid(&neuron_out[j])
}

}

Version A:

void main() {
for(int i = 0; i < Nin; i++) {
for(int j = 0; j < Nout; j++) {
neuron_out[j] += synapse[j][i] *

neuron_in[i];
}

}
for(int j = 0; j < Nout; j++) {

apply_sigmoid(&neuron_out[j])
}

}

Version B:

void main() {
for(int i = 0; i < Nin; i++) {

for(int j = 0; j < Nout; j++) {
multiply_elem(&neuron_out[j],

synapse[j][i],neuron_in[i]);
}

}
for(int j = 0; j < Nout; j++) {
neuron_out[j] =

sigmoid(neuron_out[j]);
}

}

Version C:

void main() {
for(int j = 0; j < Nout; j++) {
for(int i = 0; i < Nin; i++) {

neuron_out[j] += synapse[j][i] *
neuron_in[i];

}
}
for(int j = 0; j < Nout; j++) {
neuron_out[j] =

sigmoid(neuron_out[j]);
}

}

Version D:

void main() {
for(i = 0; i < Nin; i++) {
for(j = 0; j < Nout; j++) {

neuron_out[j] += synapse[j][i] *
neuron_in[i];

}
}
for(j = 0; j < Nout; j++) {
neuron_out[j] =

sigmoid(neuron_out[j]);
}

}

6

1. What optimization was applied to Versions A & B? (2pts)

2. Which version, A or B, is faster and why? (use no more than 10 words, 2pts)

3. Which version, C or D, is faster and why? (use no more than 15 words, 2pts)

4. What is one additional optimization that can be performed, besides multi-threading and the optimiza-
tions applied above? (use no more than 10 words, 3pts)

5. We disassembled Version C’s innermost loop below (the one that updates i).

0x00000000004003ef <+15>: mov 0x601140(%rdi,%rdx,1),%si
0x00000000004003f7 <+23>: add $0x2,%rdx
0x00000000004003fb <+27>: imul 0x60105e(%rdx),%si
0x0000000000400403 <+35>: add %esi,%ecx
0x0000000000400405 <+37>: cmp $0xc8,%rdx
0x000000000040040c <+44>: jne 0x4003ef <main+15>

Assume that all instructions take 1 cycle, that all branches are perfectly predicted, and that we have
an out-of-order core with infinite functional units. If we run this loop 100 times, about how many
cycles will it take to execute? (4pts)

6. If we changed the core so that the latency of a multiply is 3 cycles, now how long would it take? (2pts)

7

Question 6. Caching Out (18 pts)

The following problem concerns the way virtual addresses are translated into physical addresses.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 13 bits wide.

• The page size is 512 bytes.

• The TLB is 8-way set associative with 16 total entries.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page
table for the first 32 pages, and the cache are as follows:

TLB
Index Tag PPN Valid

0 09 4 1
12 2 1
10 0 1
08 5 1
05 7 1
13 1 0
10 3 0
18 3 0

1 04 1 0
0C 1 0
12 0 0
08 1 0
06 7 0
03 1 0
07 5 0
02 2 0

Page Table
VPN PPN Valid VPN PPN Valid

00 6 1 10 0 1
01 5 0 11 5 0
02 3 1 12 2 1
03 4 1 13 4 0
04 2 0 14 6 0
05 7 1 15 2 0
06 1 0 16 4 0
07 3 0 17 6 0
08 5 1 18 1 1
09 4 0 19 2 0
0A 3 0 1A 5 0
0B 2 0 1B 7 0
0C 5 0 1C 6 0
0D 6 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 1F 1 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 A1 B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 1F 1 11 C2 11 33 1E 1 00 C0 0F 00

8

First, determine the bit-level mappings. (8pts)

The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if they
exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(extra scratch space)

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:
PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Fill in the following: (10 pts)

Virtual Addr. Physical Address TLB Miss? Page Fault? Cache Miss? Byte Read

0x1DFD 0x 0x

0x1DFE 0x 0x

0x1DFF 0x 0x

0x1E00 0x 0x

1. Simulate what happens when a program executes 4 load statements (one after the other), with the
corresponding virtual addresses appearing below. For each one, indicate the physical address, whether
there was a TLB miss, page fault and cache miss, as well as the byte read. If certain information
cannot be determined from the above tables, leave it blank!.

9

Question 7. You’ve got to be forking kidding me! (15 pts)

Consider the following multi-threaded and multi-process versions of a code. (of course, only one ”main”
function would be included at a time)

pthread_t threads[3];
sem_t s1,s2,s3;

void* func1(void* x) { sem_wait(&s1); printf("Do\n"); sem_post(&s2); }
void* func2(void* x) { sem_wait(&s2); printf("Se\n"); sem_post(&s3); }
void* func3(void* x) { sem_wait(&s3); printf("Yek\n"); sem_post(&s1); }

int main(int argc, char** argv) { //Thread Version!
sem_init(&s1,0,0);
sem_init(&s2,0,0);
sem_init(&s3,0,1);

pthread_create(&threads[0], NULL, func1, NULL);
pthread_create(&threads[1], NULL, func2, NULL);
pthread_create(&threads[2], NULL, func3, NULL);

for(int i = 0; i < 3; ++i) {
void* status;
pthread_join(threads[i], &status);

}
}

int main(int argc, char** argv) { //Fork Version!
sem_init(&s1,0,0);
sem_init(&s2,0,0);
sem_init(&s3,0,1);

int id1 = fork();
int id2 = fork();

if(id1 == 0 && id2 == 0) { func1((void*) 0); }
if(id1 != 0 && id2 != 0) { func2((void*) 0); }
if(id1 != 0 && id2 == 0) { func3((void*) 0); }

}

10

Answer the following questions BOTH for the multi-thread and multi-process versions of main: (2 pts
each)

1. What could possibly be printed?

Multithread: Multiprocess:

2. Is there a possibility for race?

Multithread: Multiprocess:

3. Is there a possibility for deadlock?

Multithread: Multiprocess:

4. Write the letter T next to any characters relevant to the multi-threaded version (if any), write the
letter M next to any characters relevant to the multi-process version (if any). (3pts)

11

Question 8. Time for Revenge! (16pts)

It’s time to get revenge on the big banks. Your friend Sombra works at InsecureBankCo, and manages
to steal some code. She also gets the dissassembly from gdb, which is printed below.

Each user’s data is in a bank account t struct, and there is a table for all the users called “users”. You
know your account data is inside.

One of the features of the bank is that they let users set a notification time for any account alerts – you
notice that this occurs in “set notification time”. This function takes a user ID, an id for the day-of-the-week
(0 represents Monday, 4 represents Friday), and a integer representing the notification time (9 = 9:00am).
This function looks *very* interesting for an exploit.

typedef struct acc {
char username[16]; //username string
long int dollars; //each user’s money
long int daily_notification_time[5]; //time of day for notificaiton

} bank_account_t;

bank_account_t users[num_accounts];

int set_notification_time(int user_id, int day_of_week, long int time) {
bank_account_t b = users[user_id];
b.daily_notification_time[day_of_week] = time;
users[user_id] = b;

}

void delete_all_accounts() {
memset(users,0,sizeof(users)); //sets the users array to 0

}

(gdb) p/x &users
$2 = 0x601060

(gdb) disassemble set_notification_time
Dump of assembler code for function set_notification_time:

0x0000000000400546 <+0>: movslq %edi,%rdi
0x0000000000400549 <+3>: shl $0x6,%rdi
0x000000000040054d <+7>: mov 0x601060(%rdi),%rcx
0x0000000000400554 <+14>: mov %rcx,-0x40(%rsp)
0x0000000000400559 <+19>: mov 0x601068(%rdi),%rcx
0x0000000000400560 <+26>: mov %rcx,-0x38(%rsp)
0x0000000000400565 <+31>: mov 0x601070(%rdi),%rcx
0x000000000040056c <+38>: mov %rcx,-0x30(%rsp)
0x0000000000400571 <+43>: mov 0x601078(%rdi),%rcx
0x0000000000400578 <+50>: mov %rcx,-0x28(%rsp)
0x000000000040057d <+55>: mov 0x601080(%rdi),%rcx
0x0000000000400584 <+62>: mov %rcx,-0x20(%rsp)
0x0000000000400589 <+67>: mov 0x601088(%rdi),%rcx
0x0000000000400590 <+74>: mov %rcx,-0x18(%rsp)
0x0000000000400595 <+79>: mov 0x601090(%rdi),%rcx
0x000000000040059c <+86>: mov %rcx,-0x10(%rsp)
0x00000000004005a1 <+91>: mov 0x601098(%rdi),%rcx
0x00000000004005a8 <+98>: mov %rcx,-0x8(%rsp)
0x00000000004005ad <+103>: movslq %esi,%rsi
0x00000000004005b0 <+106>: mov %rdx,-0x28(%rsp,%rsi,8)
0x00000000004005b5 <+111>: mov -0x40(%rsp),%rdx

12

0x00000000004005ba <+116>: mov %rdx,0x601060(%rdi)
0x00000000004005c1 <+123>: mov -0x38(%rsp),%rdx
0x00000000004005c6 <+128>: mov %rdx,0x601068(%rdi)
0x00000000004005cd <+135>: mov -0x30(%rsp),%rdx
0x00000000004005d2 <+140>: mov %rdx,0x601070(%rdi)
0x00000000004005d9 <+147>: mov -0x28(%rsp),%rdx
0x00000000004005de <+152>: mov %rdx,0x601078(%rdi)
0x00000000004005e5 <+159>: mov -0x20(%rsp),%rdx
0x00000000004005ea <+164>: mov %rdx,0x601080(%rdi)
0x00000000004005f1 <+171>: mov -0x18(%rsp),%rdx
0x00000000004005f6 <+176>: mov %rdx,0x601088(%rdi)
0x00000000004005fd <+183>: mov -0x10(%rsp),%rdx
0x0000000000400602 <+188>: mov %rdx,0x601090(%rdi)
0x0000000000400609 <+195>: mov -0x8(%rsp),%rdx
0x000000000040060e <+200>: mov %rdx,0x601098(%rdi)
0x0000000000400615 <+207>: retq

(gdb) disassemble delete_all_accounts
Dump of assembler code for function delete_all_accounts:

0x0000000000400616 <+0>: mov $0x601060,%edx
0x000000000040061b <+5>: mov $0x320,%ecx
0x0000000000400620 <+10>: mov $0x0,%eax
0x0000000000400625 <+15>: mov %rdx,%rdi
0x0000000000400628 <+18>: rep stos %rax,%es:(%rdi)
0x000000000040062b <+21>: retq

%rsp - 0x00

%rsp - 0x08

%rsp - 0x10

%rsp - 0x18

%rsp - 0x20

%rsp - 0x28

%rsp - 0x30

%rsp - 0x38

%rsp - 0x40

%rsp - 0x48

%rsp - 0x50

1. In the box above, draw the stack as it would appear just before instruction 0x4005b5 after calling
the function “set notification time(0,1,9)”. (Meaning user=0, day=Tuesday, time=9:00am). Draw
everything you know about the stack. Hint: you won’t know all the data values to put into the stack,
instead, label the stack with appropriate variable names (like ”username, bytes 0-7”).

2. With what arguments could you call “set notification time” to give yourself ONE MILLION dollars?
(assume your user id is 10)

3. With what arguments could you call “set notification time” to delete all the accounts (the users array)?

13

